450 research outputs found

    Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel based superalloys

    Get PDF
    Nickel based superalloys are used in high strength, high value applications, such as gas turbine discs in aeroengines. In these applications the integrity of the disc is critical and therefore understanding crack initiation mechanisms is of high importance. With an increasing trend towards powder metallurgy routes for discs, sometimes unwanted non-metallic inclusions are introduced during manufacture. These inclusions vary in size from ~ 10 μm to 200 μm which is comparable to the grain size of the Nickel based superalloys. Cracks often initiate near these inclusions and the precise size, shape, location and path of these cracks are microstructurally sensitive. In this study, we focus on crack initiation at the microstructural length scale using a controlled three-point bend test, with the inclusion deliberately located within the tensile fibre of the beam. Electron backscatter diffraction (EBSD) is combined with high spatial resolution digital image correlation (HR-DIC) to explore full field plastic strain distributions, together with finite element modelling, to understand the micro-crack nucleation mechanisms. This full field information and controlled sample geometry enable us to systematically test crack nucleation criteria. We find that a combined stored energy and dislocation density provide promising results. These findings potentially facilitate more reliable and accurate lifing prediction tools to be developed and applied to engineering components

    Influence of powder-bed temperature on the microstructure and mechanical properties of Ti-6Al-4V produced by selective laser melting

    Get PDF
    Advanced characterisation techniques were used on LPBF Ti-6Al-4V samples produced on a heated base plate. When the substrate temperature is 100°C the elongation is 6\%, which increases and peaks at 10\% at 570°C, then sharply decreases to zero ductility at 770°C. At 100°C, a heavily strained and twinned microstructure, primarily composed of {\alpha}+{\alpha}', was observed and it was comparable to asbuilt microstructures obtained by conventional LPBF methods. At higher temperatures, twins are no longer present and instead nano-scale {\beta} precipitates are observed within {\alpha}' and {\alpha}, as well as dislocation networks (570°C) and tangles (770°C). Solute segregation at crystal defects was observed in all pre-heating conditions. Al and V segregation at microtwins was observed in the 100°C sample, reporting for the first time `selective' and mutually exclusive Al- and V-rich regions forming in adjacent twins. V segregation at dislocations was observed in the 570°C and 770°C samples, consistent with the higher preheating temperatures. High O contents were measured in all samples but with apparent opposing effects. At 100°C and 570°C was estimated to be below the critical threshold for O embrittlement and locally aids in maintaining a strength high by solid solution strengthening, whereas at 770°C it was above the threshold, therefore failing in a brittle fashion. Based on these observations, the initial increase in ductility from 100°C to 570°C is attributed to a reduction in microtwins and the dislocation networks acting as `soft barriers' for slip within a coarser microstructure. The lack of ductility at 770°C was attributed to local solute redistribution causing dislocation pinning and an increase of O content in this sample

    Effect of substrate bed temperature on solute segregation and mechanical properties in Ti–6Al–4V produced by laser powder bed fusion

    Get PDF
    Titanium alloys are particularly sensitive to temperature during additive manufacturing processes, due to their dual phase microstructure and sensitivity to oxygen uptake. In this paper, laser powder bed fusion (LPBF) was used in conjunction with a heated substrate bed at 100 °C, 570 °C and 770 °C to produce specimens of Ti–6Al–4V, to investigate the change in mechanical properties and segregation of alloying elements. An initial increase in ductility was observed when increasing the temperature from 100 °C to 570 °C, followed by a significant loss in ductility when samples were produced at 770 °C. A suite of multi-scale characterisation techniques revealed that the as-printed microstructure was drastically different across the range of temperatures. At 100 °C, α + α′ phases were identified. Deformation twinning was extensively observed in the a phase, with Al and V segregating at the twin interfaces. At 570 °C (the most ductile sample), α′, α and nano-particles of β were observed, with networks of entangled dislocations showing V segregation. At 770 °C, no martensitic α′ was identified. The microstructure was an α + β microstructure and an increased volume fraction of tangled dislocations with localised V segregation. Thermodynamic modelling based on the Gibbs-free energy of formation showed that the increased V concentration at dislocations was insufficient to locally nucleate β phase. However, b-phase nucleation at grain boundaries (not dislocations) caused pinning of grain boundaries, impeding slip and leading to a reduction in ductility. It is likely that the increased O-content within specimens printed at increased temperatures also played a key role in high-temperature embrittlement. Building operations are therefore best performed below sub-transus temperatures, to encourage the growth of strengthening phases via solute segregation, and the build atmosphere must be tightly controlled to reduce oxygen uptake within the samples

    Dynamic deformation of metastable austenitic stainless steels at the nanometric length scale

    Get PDF
    Cyclic indentation was used to evaluate the dynamic deformation on metastable steels, particularly in an austenitic stainless steel, AISI 301LN. In this work, cyclic nanoindentation experiments were carried out and the obtained loading-unloading (or P-h) curves were analyzed in order to get a deeper knowledge on the time-dependent behavior, as well as the main deformation mechanisms. It was found that the cyclic P-h curves present a softening effect due to several repeatable features (pop-in events, ratcheting effect, etc.) mainly related to dynamic deformation. Also, observation by transmission electron microscopy highlighted that dislocation pile-up is the main responsible of the secondary pop-ins produced after certain cycles.Peer ReviewedPostprint (author's final draft

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore