132 research outputs found
Fiction Fix 10
https://digitalcommons.unf.edu/fiction_fix/1002/thumbnail.jp
Response and resilience of Spartina alterniflora to sudden dieback
We measured an array of biophysical and spectral variables to evaluate the response and recovery of Spartina alterniflora to a sudden dieback event in spring and summer 2004 within a low marsh in coastal Virginia, USA. S. alterniflora is a foundation species, whose loss decreases ecosystem services and potentiates ecosystem state change. Long-term records of the potential environmental drivers of dieback such as precipitation and tidal inundation did not evidence any particular anomalies, although Hurricane Isabel in fall 2003 may have been related to dieback. Transects were established across the interface between the dieback area and apparently healthy areas of marsh. Plant condition was classified based on ground cover within transects as dieback, intermediate and healthy. Numerous characteristics of S. alterniflora culms within each condition class were assessed including biomass, morphology and spectral attributes associated with photosynthetic pigments. Plants demonstrated evidence of stress in 2004 and 2005 beyond areas of obvious dieback and resilience at a multi-year scale. Resilience of the plants was evident in recovery of ground cover and biomass largely within 3 y, although a small remnant of dieback persisted for 8 y. Culms surviving within the dieback and areas of intermediate impact had modified morphological traits and spectral response that reflected stress. These morphometric and spectral differences among plant cover condition classes serve as guidelines for monitoring of dieback initiation, effects and subsequent recovery. Although a number of environmental and biotic parameters were assessed relative to causation, the reason for this particular dieback remains largely unknown, however
Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube
A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of γ=2.58-0.09+0.10 and per-flavor normalization of φper-flavorAstro=1.68-0.22+0.19×10-18×GeV-1 cm-2 s-1 sr-1 (at 100 TeV). The sensitive energy range for this dataset is 3-550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff
Observation of seven astrophysical tau neutrino candidates with IceCube
We report on a measurement of astrophysical tau neutrinos with 9.7 years of IceCube data. Using convolutional neural networks trained on images derived from simulated events, seven candidate ντ events were found with visible energies ranging from roughly 20 TeV to 1 PeV and a median expected parent ντ energy of about 200 TeV. Considering backgrounds from astrophysical and atmospheric neutrinos, and muons from π±/K± decays in atmospheric air showers, we obtain a total estimated background of about 0.5 events, dominated by non-ντ astrophysical neutrinos. Thus, we rule out the absence of astrophysical ντ at the 5σ level. The measured astrophysical ντ flux is consistent with expectations based on previously published IceCube astrophysical neutrino flux measurements and neutrino oscillations
Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico
Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations
A survey of canine tick-borne diseases in India
Background: There are few published reports on canine Babesia, Ehrlichia, Anaplasma, Hepatozoon and haemotropic Mycoplasma infections in India and most describe clinical disease in individual dogs, diagnosed by morphological observation of the microorganisms in stained blood smears. This study investigated the occurrence and distribution of canine tick-borne disease (TBD) pathogens using a combination of conventional and molecular diagnostic techniques in four cities in India. Results: On microscopy examination, only Hepatozoon gamonts were observed in twelve out of 525 (2.3%; 95% CI: 1.2, 4) blood smears. Using polymerase chain reaction (PCR), a total of 261 from 525 dogs (49.7%; 95% CI: 45.4, 54.1) in this study were infected with one or more canine tick-borne pathogen. Hepatozoon canis (30%; 95% CI: 26.0, 34.0) was the most common TBD pathogen found infecting dogs in India followed by Ehrlichia canis (20.6%; 95% CI: 17.2, 24.3), Mycoplasma haemocanis (12.2%; 95% CI: 9.5, 15.3), Anaplasma platys (6.5%; 95% CI: 4.5, 8.9), Babesia vogeli (5.5%, 95% CI: 3.7, 7.8) and Babesia gibsoni (0.2%, 95% CI: 0.01, 1.06). Concurrent infection with more than one TBD pathogen occurred in 39% of cases. Potential tick vectors, Rhipicephalus (most commonly) and/or Haemaphysalis ticks were found on 278 (53%) of dogs examined. Conclusions: At least 6 species of canine tick-borne pathogens are present in India. Hepatozoon canis was the most common pathogen and ticks belonging to the genus Rhipicephalus were encountered most frequently. Polymerase chain reaction was more sensitive in detecting circulating pathogens compared with peripheral blood smear examination. As co-infections with canine TBD pathogens were common, Indian veterinary practitioners should be cognisant that the discovery of one such pathogen raises the potential for multiple infections which may warrant different clinical management strategies
Recommended from our members
Search for Continuous and Transient Neutrino Emission Associated with IceCube’s Highest-energy Tracks: An 11 yr Analysis
IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events’ error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3σ, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 × 10−15 (TeV cm2 s)−1 at 90% confidence assuming an E −2 spectrum. This corresponds to 4.5% of IceCube’s astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission
Recommended from our members
Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
We present the results of a search for 10-1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level
- …