406 research outputs found
Variations in Chlorella lipid content in commercial and in-lab produced biomass☆
Microalgae appear as a sustainable source of biomass with relevant nutritional qualities. Still, regulatory restrictions currently limit the use of eukaryotic microalgae for human consumption to a short list of species dominated by Chlorella spp. Chlorella biomass contains valuable proteins but also interesting lipids, including polyunsaturated fatty acids (PUFA) ω3 and ω6. The amount of PUFA and the ω6/ω3 ratio vary significantly depending on the species and cultivation trophic mode. While the lipid profils of in-lab produced Chlorella has been widely studied, the variability of lipid content in commercial biomasses is barely described. Here, lipid classes and fatty acid profiles of six commercial biomasses of Chlorella spp. as well as those of lab-produced C. sorokiniana grown in photo-autotrophy and in four mixotrophy conditions were characterized. Results showed significant lipid composition variations between the biomasses, such as the triacylglycerols/glycolipids and ω6/ω3 contents. The ω6/ω3 ratios were lower in photo-autotrophic mode (2.5) while they ranged between 1.3 and 8.9 in commercial biomasses. The free fatty acids level was also variable (1.4% to 17.9% of total lipids). As a consequence, Chlorella lipid content and quality differed significantly, impacting the potential nutritional benefits of the consumption of commercial biomass. Processing and post-processing conditions should therefore be carefully controlled to optimize lipid profiles
A standardised static in vitro digestion method suitable for food – an international consensus
peer-reviewedSimulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in
vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the
digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building
new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare
results across research teams. For example, a large variety of enzymes from different sources such as of
porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in
pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may
also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes
such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio
of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within
the COST Infogest network, we propose a general standardised and practical static digestion method based
on physiologically relevant conditions that can be applied for various endpoints, which may be amended to
accommodate further specific requirements. A frameset of parameters including the oral, gastric and small
intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and
enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations
and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method
for food should aid the production of more comparable data in the future.COST action FA1005 Infogest22 (http://www.cost-infogest.eu/) is acknowledged for providing funding for travel, meetings and conferences
Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information
[EN] Background
In vitro digestion models show great promise in facilitating the rationale design of foods. This paper provides a look into the current state of the art and outlines possible future paths for developments of digestion models recreating the diverse physiological conditions of specific groups of the human population.
Scope and approach
Based on a collective effort of experts, this paper outlines considerations and parameters needed for development of new in vitro digestion models, e.g. gastric pH, enzymatic activities, gastric emptying rate and more. These and other parameters are detrimental to the adequate development of in vitro models that enable deeper insight into matters of food luminal breakdown as well as nutrient and nutraceutical bioaccessibility. Subsequently, we present an overview of some new and emerging in vitro digestion models mirroring the gastro-intestinal conditions of infants, the elderly and patients of cystic fibrosis or gastric bypass surgery.
Key findings and conclusions
This paper calls for synchronization, harmonization and validation of potential developments in in vitro digestion models that would greatly facilitate manufacturing of foods tailored or even personalized, to a certain extent, to various strata of the human population.Shani-Levi, C.; Alvito, P.; Andrés Grau, AM.; Assunção, R.; Barbera, R.; Blanquet-Diot, S.; Bourlieu, C.... (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science & Technology. 60:52-63. https://doi.org/10.1016/j.tifs.2016.10.017S52636
INFOGEST static in vitro simulation of gastrointestinal food digestion
peer-reviewedSupplementary information is available at http://dx.doi.org/10.1038/s41596-018-0119-1 or https://www.nature.com/articles/s41596-018-0119-1#Sec45.Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.COST action FA1005 INFOGEST (http://www.cost-infogest.eu/ ) is acknowledged for providing funding for travel, meetings and conferences (2011-2015). The French National Institute for Agricultural Research (INRA, www.inra.fr) is acknowledged for their continuous support of the INFOGEST network by organising and co-funding the International Conference on Food Digestion and workgroup meeting
Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products – a PEARRL review.
Objectives: In this review, the current biopharmaceutical approaches for evaluation of oral formulation performance in paediatrics are discussed. Key findings: The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological changes throughout its development and growth. Some physiological parameters are yet to be investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo performance of paediatric formulations. Meals and frequencies of their administration evolve during childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug formulation performance. Despite the great number of successful physiologically based pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI tract is a complicating issue in paediatric populations. Summary: The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further development, refinement and validation. A combination of in vitro and in silico methods could compensate for the uncertainties accompanying each method on its own
Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA
The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake
Journée SFEL. Etats des lieux des innovations technico-économiques dans le domaine des lipides
Journée SFEL. Etats des lieux des innovations technico-économiques dans le domaine des lipides. Journée SFEL. Etats des lieux des innovations technico-économiques dans le domaine des lipide
- …