172 research outputs found

    Master athletes have higher miR-7, SIRT3 and SOD2 expression in skeletal muscle than age-matched sedentary controls.

    Get PDF
    Regular physical exercise has health benefits and can prevent some of the ageing-associated muscle deteriorations. However, the biochemical mechanisms underlying this exercise benefit, especially in human tissues, are not well known. To investigate, we assessed this using miRNA profiling, mRNA and protein levels of anti-oxidant and metabolic proteins in the vastus lateralis muscle of master athletes aged over 65 years and age-matched controls. Master athletes had lower levels of miR-7, while mRNA or protein levels of SIRT3, SIRT1, SOD2, and FOXO1 levels were significantly higher in the vastus lateralis muscle of master athletes compared to muscles of age-matched controls. These results suggest that regular exercise results in better cellular metabolism and antioxidant capacity via maintaining physiological state of mitochondria and efficient ATP production and decreasing ageing-related inflammation as indicated by the lower level of miR-7 in master athletes

    Pharmacological OGG1 inhibition decreases murine allergic airway inflammation

    Get PDF
    Background and aim: Allergic asthma is a complex inflammatory disease involving type 2 innate lymphoid cells, type 2 T helper cells, macrophages, and eosinophils. The disease is characterized by wheezing, dyspnea, coughing, chest tightness and variable airflow limitation for which there is no cure and is symptomatically treated with inhaled corticosteroids and β2-agonists. Molecular mechanisms underlying its complex pathogenesis are not fully understood. However, 8-oxoguanine DNA glycosylase-1 (OGG1), a DNA repair protein may play a central role, as OGG1 deficiency decreases both innate and allergic inflammation. Methods: Using a murine ovalbumin (OVA) model of allergic airway inflammation we assessed the utility of an inhibitor of OGG1 (TH5487) in this disease context. Cytokines and chemokines, promoting immune cell recruitment were measured using a 23-multiplex assay and Western blotting. Additionally, immune cell recruitment to bronchi was measured using flow cytometry. Histological analyses and immunofluorescent staining were used to confirm immune cell influx and goblet cell hyperplasia of the airways. A PCR array was used to assess asthma-related genes in murine lung tissue following TH5487 treatment. Finally, airway hyperresponsiveness was determined using in vivo lung function measurement. Results: In this study, administration of TH5487 to mice with OVA-induced allergic airway inflammation significantly decreased goblet cell hyperplasia and mucus production. TH5487 treatment also decreased levels of activated NF-κB and expression of proinflammatory cytokines and chemokines resulting in significantly lower recruitment of eosinophils and other immune cells to the lungs. Gene expression profiling of asthma and allergy-related proteins after TH5487 treatment revealed differences in several important regulators, including down regulation of Tnfrsf4, Arg1, Ccl12 and Ccl11, and upregulation of the negative regulator of type 2 inflammation, Bcl6. Furthermore, the gene Clca1 was upregulated following TH5487 treatment, which should be explored further due to its ambiguous role in allergic asthma. In addition, the OVA-induced airway hyperresponsiveness was significantly reduced by TH5487 treatment. Conclusion: Taken together, the data presented in this study suggest OGG1 as a clinically relevant pharmacological target for the treatment of allergic inflammation

    Presence and Persistence of Ebola or Marburg Virus in Patients and Survivors: A Rapid Systematic Review

    Get PDF
    Background: The 2013-15 Ebola outbreak was unprecedented due to sustainedtransmission within urban environments and thousands of survivors. In 2014 the World Health Organization stated that there was insufficient evidence to give definitive guidance about which body fluids are infectious and when they pose a risk to humans. We report a rapid systematic review of published evidence on the presence of filoviruses in body fluids of infected people and survivors. Methods: Scientific articles were screened for information about filovirus in human body fluids. The aim was to find primary data that suggested high likelihood of actively infectious filovirus in human body fluids (viral RNA). Eligible infections were from Marburg virus (MARV or RAVV) and Zaire, Sudan, Taï Forest and Bundibugyo species of Ebola. [1] Cause of infection had to be laboratory confirmed (in practice either tissue culture or RT-PCR tests), or evidenced by compatible clinical history with subsequent positivity for filovirus antibodies or inflammatory factors. Data were extracted and summarized narratively. Results: 6831 unique articles were found, and after screening, 33 studies were eligible. For most body fluid types there were insufficient patients to draw strong conclusions, and prevalence of positivity was highly variable. Body fluids taken >16 days after onset were usually negative. In the six studies that used both assay methods RT-PCR tests for filovirus RNA gave positive results about 4 times more often than tissue culture. Conclusions: Filovirus was reported in most types of body fluid, but not in every sample from every otherwise confirmed patient. Apart from semen, most non-blood, RT-PCR positive samples are likely to be culture negative and so possibly of low infectious risk. Nevertheless, it is not apparent how relatively infectious many body fluids are during or after illness, even when culture-positive, not least because most test results come from more severe cases. Contact with blood and blood-stained body fluids remains the major risk for disease transmission because of the known high viral loads in blood

    Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis

    Get PDF
    Computational approaches have promised to organize collections of functional genomics data into testable predictions of gene and protein involvement in biological processes and pathways. However, few such predictions have been experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology community. Further, it remains unclear what biological concerns should be taken into account when using computational methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics (doi:10.1371/journal.pgen.1000407). Here we analyze and explore the results of this study that are broadly applicable for computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes representing the genomic background. Our study leads to several conclusions that are important to consider when driving laboratory investigations using computational prediction approaches. While most genes in yeast are already known to participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for annotation of additional gene functions. We find that different analysis techniques and different underlying data can both greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing prediction and validation steps iteratively allows us to more completely characterize a biological area of interest. While this study focused on a specific functional area in yeast, many of these observations may be useful in the contexts of other processes and organisms

    Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution

    Get PDF
    Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor that plays a crucial role in interleukin-6 (IL-6) signaling, mediating the acute-phase induction of the human Angiotensinogen (hAGT) gene in hepatocytes. We showed earlier that IL-6 induces acetylation of the STAT3 NH2-terminus by the recruitment of the p300 coactivator. We had also observed a physical interaction of STAT3 and Histone Deacetylase1 (HDAC1) in an IL-6-dependent manner that leads to transcriptional repression. In this study, we sought to elucidate the mechanism by which HDAC1 controls STAT3 transcriptional activity. Here, we mapped the interacting domains of both STAT3 and HDAC1 and found that the COOH-terminal domain of HDAC1 is necessary for IL-6-induced STAT3 transcriptional repression, whereas the NH2-terminal acetylation domain of STAT3 is required for HDAC1 binding. Interestingly, over expression of HDAC1 in HepG2 cells leads to significantly reduced amounts of nuclear STAT3 after IL-6 induction, whereas silencing of HDAC1 resulted in accumulation of total and acetylated STAT3 in the nucleus. We have found that HDAC1 knockdown also interferes with the responsiveness of the STAT3-dependent MCP1 target gene expression to IL-6, as confirmed by real-time RT–PCR analysis. Together, our study reveals the novel functional consequences of IL-6-induced STAT3-HDAC1 interaction on nucleocytoplasmic distribution of STAT3

    Role of PCNA-dependent stimulation of 3′-phosphodiesterase and 3′–5′ exonuclease activities of human Ape2 in repair of oxidative DNA damage

    Get PDF
    Human Ape2 protein has 3′ phosphodiesterase activity for processing 3′-damaged DNA termini, 3′–5′ exonuclease activity that supports removal of mismatched nucleotides from the 3′-end of DNA, and a somewhat weak AP-endonuclease activity. However, very little is known about the role of Ape2 in DNA repair processes. Here, we examine the effect of interaction of Ape2 with proliferating cell nuclear antigen (PCNA) on its enzymatic activities and on targeting Ape2 to oxidative DNA lesions. We show that PCNA strongly stimulates the 3′–5′ exonuclease and 3′ phosphodiesterase activities of Ape2, but has no effect on its AP-endonuclease activity. Moreover, we find that upon hydrogen-peroxide treatment Ape2 redistributes to nuclear foci where it colocalizes with PCNA. In concert with these results, we provide biochemical evidence that Ape2 can reduce the mutagenic consequences of attack by reactive oxygen species not only by repairing 3′-damaged termini but also by removing 3′-end adenine opposite from 8-oxoG. Based on these findings we suggest the involvement of Ape2 in repair of oxidative DNA damage and PCNA-dependent repair synthesis

    Inhibition of Aldose Reductase Prevents Experimental Allergic Airway Inflammation in Mice

    Get PDF
    The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E(2), IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice.These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-kappaB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis

    An iron-based beverage, HydroFerrate fluid (MRN-100), alleviates oxidative stress in murine lymphocytes in vitro

    Get PDF
    BackgroundSeveral studies have examined the correlation between iron oxidation and H2O2 degradation. The present study was carried out to examine the protective effects of MRN-100 against stress-induced apoptosis in murine splenic cells in vitro. MRN-100, or HydroFerrate fluid, is an iron-based beverage composed of bivalent and trivalent ferrates.MethodsSplenic lymphocytes from mice were cultured in the presence or absence of MRN-100 for 2 hrs and were subsequently exposed to hydrogen peroxide (H2O2) at a concentration of 25 μM for 14 hrs. Percent cell death was examined by flow cytometry and trypan blue exclusion. The effect of MRN-100 on Bcl-2 and Bax protein levels was determined by Western blot.ResultsResults show, as expected, that culture of splenic cells with H2O2 alone results in a significant increase in cell death (apoptosis) as compared to control (CM) cells. In contrast, pre-treatment of cells with MRN-100 followed by H2O2 treatment results in significantly reduced levels of apoptosis. In addition, MRN-100 partially prevents H2O2-induced down-regulation of the anti-apoptotic molecule Bcl-2 and upregulation of the pro-apoptotic molecule Bax.ConclusionOur findings suggest that MRN-100 may offer a protective effect against oxidative stress-induced apoptosis in lymphocytes

    Borna disease virus (BDV) circulating immunocomplex positivity in addicted patients in the Czech Republic: a prospective cohort analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Borna disease virus (BDV) is an RNA virus belonging to the family Bornaviridae. Borna disease virus is a neurotropic virus that causes changes in mood, behaviour and cognition. BDV causes persistent infection of the central nervous system. Immune changes lead to activation of infection. Alcohol and drug dependence are associated with immune impairment.</p> <p>Methods</p> <p>We examined the seropositivity of BDV circulating immunocomplexes (CIC) in patients with alcohol and drug dependence and healthy individuals (blood donors). We examined 41 addicted patients for the presence of BDV CIC in the serum by ELISA at the beginning of detoxification, and after eight weeks of abstinence. This is the first such study performed in patients with alcohol and drug dependence.</p> <p>Results</p> <p>BDV CIC positivity was detected in 36.59% of addicted patients on day 0 and in 42.86% on day 56. The control group was 37.3% positive. However, we did not detect higher BDV CIC positivity in addicted patients in comparison with blood donors (p = 0.179). The significantly higher level of BDV CIC was associated with lower levels of GGT (gamma glutamyl transferase) (p = 0.027) and approached statistical significance with the lower age of addicted patients (p = 0.064). We did not find any association between BDV CIC positivity and other anamnestic and demographic characteristics.</p> <p>Conclusions</p> <p>In our study addicted patients did not have significantly higher levels of BDV CIC than the control group. The highest levels of BDV CIC were detected in patients with lower levels of GGT and a lower age.</p> <p>Trial registration</p> <p>This study was approved by the ethical committee of the University Hospital Medical Faculty of Charles University in Pilsen, Czech Republic (registration number 303/2001).</p

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
    corecore