260 research outputs found

    Gravitational waves from eccentric compact binaries: Reduction in signal-to-noise ratio due to nonoptimal signal processing

    Get PDF
    Inspiraling compact binaries have been identified as one of the most promising sources of gravitational waves for interferometric detectors. Most of these binaries are expected to have circularized by the time their gravitational waves enter the instrument's frequency band. However, the possibility that some of the binaries might still possess a significant eccentricity is not excluded. We imagine a situation in which eccentric signals are received by the detector but not explicitly searched for in the data analysis, which uses exclusively circular waveforms as matched filters. We ascertain the likelihood that these filters, though not optimal, will nevertheless be successful at capturing the eccentric signals. We do this by computing the loss in signal-to-noise ratio incurred when searching for eccentric signals with those nonoptimal filters. We show that for a binary system of a given total mass, this loss increases with increasing eccentricity. We show also that for a given eccentricity, the loss decreases as the total mass is increased.Comment: 14 pages, 4 figures, ReVTeX; minor changes made after referee's comment

    Loading during Midstance of Gait Is Associated with Magnetic Resonance Imaging of Cartilage Composition Following Anterior Cruciate Ligament Reconstruction

    Get PDF
    Objective A complex association exists between aberrant gait biomechanics and posttraumatic knee osteoarthritis (PTOA) development. Previous research has primarily focused on the link between peak loading during the loading phase of stance and joint tissue changes following anterior cruciate ligament reconstruction (ACLR). However, the associations between loading and cartilage composition at other portions of stance, including midstance and late stance, is unclear. The objective of this study was to explore associations between vertical ground reaction force (vGRF) at each 1% increment of stance phase and tibiofemoral articular cartilage magnetic resonance imaging (MRI) T1? relaxation times following ACLR. Design Twenty-three individuals (47.82% female, 22.1 ±4.1 years old) with unilateral ACLR participated in a gait assessment and TIρ MRI collection at 12.25 ± 0.61 months post-ACLR. TIρ relaxation times were calculated for the articular cartilage of the weightbearing medial and lateral femoral (MFC, LFC) and tibial (MTC, LTC) condyles. Separate bivariate, Pearson product moment correlation coefficients (r) were used to estimate strength of associations between TIρ MRI relaxation times in the medial and lateral tibiofemoral articular cartilage with vGRF across the entire stance phase. Results Greater vGRF during midstance (46%-56% of stance phase) was associated with greater TIρ MRI relaxation times in the MFC (r ranging between 0.43 and 0.46). Conclusions Biomechanical gait profiles that include greater vGRF during midstance are associated with MRI estimates of lesser proteoglycan density in the MFC. Inability to unload the ACLR limb during midstance may be linked to joint tissue changes associated with PTOA development

    Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon.

    Get PDF
    BACKGROUND: Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent 'natural' phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes. RESULTS: Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued. CONCLUSIONS: The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies. THE ONTOLOGY RELEASE FILES ASSOCIATED WITH THE ONTOLOGY MERGE DESCRIBED IN THIS MANUSCRIPT ARE AVAILABLE AT: http://purl.obolibrary.org/obo/uberon/releases/2013-02-21/ CURRENT ONTOLOGY RELEASE FILES ARE AVAILABLE ALWAYS AVAILABLE AT: http://purl.obolibrary.org/obo/uberon/releases

    Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations

    Get PDF
    Despite intensive research during the past decade on the effects of alien species, invasion science still lacks the capacity to accurately predict the impacts of those species and, therefore, to provide timely advice to managers on where limited resources should be allocated. This capacity has been limited partly by the context-dependent nature of ecological impacts, research highly skewed toward certain taxa and habitat types, and the lack of standardized methods for detecting and quantifying impacts. We review different strategies, including specific experimental and observational approaches, for detecting and quantifying the ecological impacts of alien species. These include a four-way experimental plot design for comparing impact studies of different organisms. Furthermore, we identify hypothesis-driven parameters that should be measured at invaded sites to maximize insights into the nature of the impact. We also present strategies for recognizing high-impact species. Our recommendations provide a foundation for developing systematic quantitative measurements to allow comparisons of impacts across alien species, sites, and tim

    Ecological impacts of alien species: quantification, scope, caveats, and recommendations

    Get PDF
    Despite intensive research during the past decade on the effects of alien species, invasion science still lacks the capacity to accurately predict the impacts of those species and, therefore, to provide timely advice to managers on where limited resources should be allocated. This capacity has been limited partly by the context-dependent nature of ecological impacts, research highly skewed toward certain taxa and habitat types, and the lack of standardized methods for detecting and quantifying impacts. We review different strategies, including specific experimental and observational approaches, for detecting and quantifying the ecological impacts of alien species. These include a four-way experimental plot design for comparing impact studies of different organisms. Furthermore, we identify hypothesis-driven parameters that should be measured at invaded sites to maximize insights into the nature of the impact. We also present strategies for recognizing high-impact species. Our recommendations provide a foundation for developing systematic quantitative measurements to allow comparisons of impacts across alien species, sites, and time

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Broad-scale patterns of body size in squamate reptiles of Europe and North America

    Full text link
    Aim To document geographical interspecific patterns of body size of European and North American squamate reptile assemblages and explore the relationship between body size patterns and environmental gradients. Location North America and western Europe. Methods We processed distribution maps for native species of squamate reptiles to document interspecific spatial variation of body size at a grain size of 110 x 110 km. We also examined seven environmental variables linked to four hypotheses possibly influencing body size gradients. We used simple and multiple regression, evaluated using information theory, to identify the set of models best supported by the data. Results Europe is characterized by clear latitudinal trends in body size, whereas geographical variation in body size in North America is complex. There is a consistent association of mean body size with measures of ambient energy in both regions, although lizards increase in size northwards whereas snakes show the opposite pattern. Our best models accounted for almost 60% of the variation in body size of lizards and snakes within Europe, but the proportions of variance explained in North America were less than 20%. Main conclusions Although body size influences the energy balance of thermoregulating ectotherms, inconsistent biogeographical patterns and contrasting associations with energy in lizards and snakes suggest that no single mechanism can explain variation of reptile body size in the northern temperate zone

    Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age.

    Get PDF
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
    corecore