443 research outputs found

    The cohomology of superspace, pure spinors and invariant integrals

    Full text link
    The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to \a'^3. Some partial results on N=2,d=10N=2,d=10 and N=1,d=11N=1,d=11 are also given.Comment: 24 pages. Minor changes; added reference

    Gravitational Collapse in Generalized Vaidya Space-Time for Lovelock Gravity Theory

    Full text link
    In this work, we have assumed the generalized Vaidya solution in Lovelock theory of gravity in (n+2)(n+2)-dimensions. It has been shown that Gauss-Bonnet gravity, dimensionally continued Lovelock gravity and pure Lovelock gravity can be constructed by suitable choice of parameters. We have investigated the occurrence of singularities formed by the gravitational collapse in above three particular forms of Lovelock theory of gravity. The dependence of the nature of singularity on the existence of radial null geodesic for Vaidya space-time has been specially considered. In all the three models, we have shown that the nature of singularities (naked singularity or black hole) completely depend on the parameters. Choices of various parameters are shown in tabular form. In Gauss-Bonnet gravity theory, it can be concluded that the possibility of naked singularity increases with increase in dimensions. In dimensionally continued Lovelock gravity, the naked singularity is possible for odd dimensions for several values of parameters. In pure Lovelock gravity, only black hole forms due to the gravitational collapse for any values of parameters. It has been shown that when accretion is taking place on a collapsing object, it is highly unlikely to get a black hole. Finally on considering the phantom era in the expanding universe it is observed that there is no possibility of formation of a black hole if we are in the Gauss-Bonnet gravity considering the accreting procedure upon a collapsing object.Comment: 11 page

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    Linking Distributive and Procedural Justice to Employee Engagement Through Social Exchange: A Field Study in India

    Get PDF
    Research linking justice perceptions to employee outcomes has referred to social exchange as its central theoretical premise. We tested a conceptual model linking distributive and procedural justice to employee engagement through social exchange mediators, namely, perceived organizational support and psychological contract, among 238 managers and executives from manufacturing and service sector firms in India. Findings suggest that perceived organizational support mediated the relationship between distributive justice and employee engagement, and both perceived organizational support and psychological contract mediated the relationship between procedural justice and employee engagement. Theoretical and practical implications with respect to organizational functions are discussed

    A Braneworld Dark Energy Model with Induced Gravity and the Gauss-Bonnet Effect

    Full text link
    We construct a holographic dark energy model with a non-minimally coupled scalar field on the brane where Gauss-Bonnet and Induced Gravity effects are taken into account. This model provides a wide parameter space with several interesting cosmological implications. Especially, the equation of state parameter of the model crosses the phantom divide line and it is possible to realize bouncing solutions in this setup.Comment: 20 pages, 3 eps figures, to appear in IJT

    Integrated motor drives: state of the art and future trends

    Get PDF
    With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system. This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health
    corecore