63 research outputs found

    Methods for Improving Signal to Noise Ratio in Raman Spectra

    Get PDF
    Raman microspectroscopy is an optoelectronic technique based on the inelastic scattering of light. This technique has been demonstrated to have potential to identify different materials based on subtle differences in the Raman spectral profile using various multivariate statistical classification tools. However, Raman scattering is an inherently weak process. Low photon counts coupled with non-ideal collection efficiencies means that Raman spectroscopy is vulnerable to noise. This makes system optimisations, as well as efficient and reliable noise removal, a necessity in sensitive applications such as chemical classification or diagnostics. Provided in this thesis are software and experimental methodologies to evaluate system performance, predict system performance under various conditions, and to identify the optimal system configuration/set-up in order to achieve the highest possible signal to noise ratio. Modelling methodologies presented in this thesis allow the user to systematically evaluate minimum acquisition times, optimise camera read-out modes, and predict system behaviour with alternative optical elements in order to maximise signal to noise ratio. The denosing algorithms presented in this thesis have been shown to provide superior signal to noise ratio when compared with their traditional counterparts. When compared with the double acquisition method, the proposed cosmic ray removal algorithm resulted in a 10% improvement. An algorithm that enhances Savitzky-Golay smoothing with maximum likelihood estimation produced spectra with up to double the signal to noise ratio when compared to the raw spectra and consistently outperformed the algorithms it was compared to. The use of reflective substrates is also investigated and was shown to approximately triple the collected Raman scatter when compared with transparent substrates. By utilising the methodologies detailed in this thesis it is possible to improve the efficiency of the Raman system in question

    Quantifying the Concentration of Glucose, Urea, and Lactic Acid in Mixture by Confocal Raman Microscopy

    Get PDF
    Raman spectroscopy has numerous applications in the field of biology. One such application is the simultaneously measurement of the concentration of multiple biochemical components in low volume aqueous mixtures, for example, a single drop of blood serum. Over twenty years ago, it was shown for the first time that it was possible to estimate the concentration of glucose, urea, and lactic acid in mixture by combining Raman Spectroscopy with Partial Least Squares Regression analysis. This was followed by numerous contributions in the literature designed to increase the number of components and reduce the limits of concentration that could be simultaneously measured using Raman spectroscopy, by developing various optical architectures to maximise the signal to noise ratio. The aim of this paper is to demonstrate the potential of a confocal Raman microscopy system for multicomponent analysis for the case of physiologically relevant mixtures of glucose, urea, and lactic acid

    Early Stopping Criterion for Recursive Least Squares Training of Behavioural Models

    Get PDF
    As the physical makeup of cellular base-stations evolve into systems with multiple parallel transmission paths the effort involved in modelling these complex systems increases considerably. One task in particular which contributes to signal distortion on each signal path, is the power amplifier. In power amplifier modelling, Recursive Least Squares has been used in the past to train Volterra models with memory terms, however instability can occur when training the model weights. This manuscript provides a computationally efficient technique to detect the onset of instability and subsequently to inform the decision when to stop adaptive training of dynamic nonlinear behavioural models and avoid the onset of instability. This technique is experimentally validated using four different signal modulation schemes

    Improved Performance of Near infrared Excitation Raman Spectroscopy Using Reflective Thin-film Gold on Glass Substrates for Cytology Samples

    Get PDF
    Confocal near-infrared Raman spectroscopy has been shown to have applications in the area of clinical biology. A source wavelength in the near infrared is preferred over visible wavelengths for inspecting biological samples due to superior wave number resolution and reduced photo damage. However, these excitation sources have a number of drawbacks when compared to lasers in the visible wavelength region, including the requirement to use expensive highly pure crystal substrates such as Raman grade calcium fluoride as well as long acquisition times due to the lower Raman scattering efficiency. This paper investigates the use of a reflective substrate comprising a low cost 100 nm thin-film gold on glass substrate, as an alternative. Similar to recent work that used stainless steel substrates, it is demonstrated that the thin-film gold coated substrates, which are relatively inexpensive, produce cell spectra with 1.65 times the signal to noise ratio when compared with spectra obtained from calcium fluoride under identical conditions, with no apparent background signal in the fingerprint region. Two prostate cell lines are examined having been deposited on glass, calcium fluoride, and thin-film gold on glass substrates using the Thin Prep standard. Background spectra from, and cell adhesion on, these three substrates are compared. A comparison of the intensities and signal to noise ratios of the resulting spectra, and their viability for classification using principle components analysis is performed, which further demonstrates the benefit of reflective substrates

    Improved performance of near infrared excitation Raman spectroscopy using reflective thin-film gold on glass substrates for cytology samples

    Get PDF
    Confocal near-infrared Raman spectroscopy has been shown to have applications in the area of clinical biology. A source wavelength in the near infrared is preferred over visible wavelengths for inspecting biological samples due to superior wavenumber resolution and reduced photodamage. However, these excitation sources have a number of drawbacks when compared to lasers in the visible wavelength region, including the requirement to use expensive highly pure crystal substrates such as Raman grade calcium fluoride as well as long acquisition times due to the lower Raman scattering efficiency. This paper investigates the use of a reflective substrate comprising a low cost 100 nm thin-film gold on glass substrate, as an alternative. Similar to recent work that used stainless steel substrates, it is demonstrated that the thin-film gold coated substrates, which are relatively inexpensive, produce cell spectra with 1.65 times the signal to noise ratio when compared with spectra obtained from calcium fluoride under identical conditions, with no apparent background signal in the fingerprint region. Two prostate cell lines are examined having been deposited on glass, calcium fluoride, and thin-film gold on glass substrates using the ThinPrep standard. Background spectra from, and cell adhesion on, these three substrates are compared. A comparison of the intensities and signal to noise ratios of the resulting spectra, and their viability for classification using principle components analysis is performed, which further demonstrates the benefit of reflective substrates

    Developing Clinical and Research Priorities for Pain and Psychological Features in People With Patellofemoral Pain:An International Consensus Process With Health Care Professionals

    Get PDF
    OBJECTIVE: To decide clinical and research priorities on pain features and psychological factors in persons with patellofemoral pain. DESIGN: Consensus development process. METHODS: We undertook a 3-stage process consisting of (1) updating 2 systematic reviews on quantitative sensory testing of pain features and psychological factors in patellofemoral pain, (2) an online survey of health care professionals and persons with patellofemoral pain, and (3) a consensus meeting with expert health care professionals. Participants responded that they agreed, disagreed, or were unsure that a pain feature or psychological factor was important in clinical practice or as a research priority. Greater than 70% participant agreement was required for an item to be considered important in clinical practice or a research priority. RESULTS: Thirty-five health care professionals completed the survey, 20 of whom attended the consensus meeting. Thirty persons with patellofemoral pain also completed the survey. The review identified 5 pain features and 9 psychological factors—none reached 70% agreement in the patient survey, so all were considered at the meeting. Afte the meeting, pain catastrophizing, fear-avoidance beliefs, and pain self-efficacy were the only factors considered clinically important. All but the therma pain tests and 3 psychological factors were consid ered research priorities. CONCLUSION: Pain catastrophizing, pain self-efficacy, and fear-avoidance beliefs were factors considered important in treatment planning, clinical examination, and prognostication. Quantitative sensory tests for pain were not regarded as clinically important but were deemed to be research priorities, as were most psychological factors.</p

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore