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Improved performance of near infrared excitation Raman spec-
troscopy using re�ective thin-�lm gold on glass substrates for cy-
tology samples

Sinead J. Bartona, Kevin O’Dwyera, Marion Butlerb, Adam Dignamb, Hugh J. Byrnec, Luke
O’Neillc, and Bryan M. Hennelly∗a,d

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

Confocal near-infrared Raman spectroscopy has been shown to have applications in the area of clinical biology. A source wave-
length in the near infrared is preferred over visible wavelengths for inspecting biological samples due to superior wavenumber
resolution and reduced photodamage. However, these excitation sources have a number of drawbacks when compared to lasers
in the visible wavelength region, including the requirement to use expensive highly pure crystal substrates such as Raman grade
calcium �uoride as well as long acquisition times due to the lower Raman sca�ering e�ciency. �is paper investigates the use
of a re�ective substrate comprising a low cost 100nm thin-�lm gold on glass substrate, as an alternative. Similar to recent
work that used stainless steel substrates, it is demonstrated that the thin-�lm gold coated substrates, which are relatively in-
expensive, produce cell spectra with 1.65 times the signal to noise ratio when compared with spectra obtained from calcium
�uoride under identical conditions, with no apparent background signal in the �ngerprint region. Two prostate cell lines are
examined having been deposited on glass, calcium �uoride, and thin-�lm gold on glass substrates using the �inPrep standard.
Background spectra from, and cell adhesion on, these three substrates are compared. A comparison of the intensities and signal
to noise ratios of the resulting spectra, and their viability for classi�cation using principle components analysis is performed,
which further demonstrates the bene�t of re�ective substrates.

1 Introduction

Raman spectroscopy has been shown to have widespread ap-
plication in the areas of clinical biology and medicine.1–4

Confocal Raman microspectroscopy (RMS), in conjunction
with multivariate classi�cation, is a commonly applied tech-
nique for the biochemical analysis of tissues and cells.1–7

Typically, this involves �rst mounting the samples onto a sub-
strate, which can be achieved either in-vitro or ex-vivo, fol-
lowed by analysis with a microscope that has been integrated
with a Raman spectroscopy system.8

Excitation of the Raman spectrum using a source laser with
a wavelength in the near infrared (NIR) has a number of key
advantages for analysing biological samples when compared
with visible wavelength excitation: (i) Firstly, photons in the
NIR are absorbed to a lesser degree in tissues and cells and
there is, therefore, less likelihood of burning or damaging the
sample; (ii) secondly, biological samples are known to pro-
duce li�le or no auto-�uorescence with NIR lasers, the pres-
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ence of which can be problematic when comparing spectra;
and (iii) the wavenumber resolution is superior in a Raman
spectrum sca�ered using a NIR wavelength (for example, the
resolution at 785 nm is ∼2.3 times smaller than that at 532
nm).

However, despite the advantages discussed above, there
also exist a number of disadvantages associated with NIR ex-
citation: (i) Firstly, and most signi�cantly, the spectrum from
a glass substrate has a large �uorescence that overwhelms the
cell spectrum. �is necessitates the use of expensive, highly
pure Calcium Fluoride (CaF2) substrates (>$100 per slide) or
similar. (ii) Secondly, the rate of Raman sca�ering is appre-
ciably reduced (scales as a function of the fourth power of
the inverse wavelength) for excitation using longer wave-
lengths, which results in lower values of the signal to noise
ratio (SNR); for example, it can be shown that 532 nm ex-
citation source produces Raman spectra that are 4.74 times
more intense than those produced by a 785 nm source laser of
equivalent power, assuming non-resonant conditions. �ere
is, therefore, a requirement for increased acquisition times
when using longer excitation wavelengths.

In recent years, the applications of RMS to biological cells
for the purpose of diagnostics has increased, with many re-
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porting the classi�cation of bladder9–13, cervical14, and oral15

cytological samples with a sensitivity and speci�city that is
greater than standard pathology. Due to the limitations of
NIR excitation in terms of substrate cost, and long acquisition
times, it is impractical for high throughput applications such
as cytology for screening, the most obvious example being
the Pap smear, and, therefore, visible excitation is typically
preferred. Despite the advantages of Raman spectroscopy
with NIR excitation, the high cost of highly pure Calcium
Fluoride (CaF2) substrates has limited the application of this
modality in the areas of cytology and histopathology. In re-
cent years, there is growing interest in alternative substrates
that provide a low background spectrum and at low cost, par-
ticularly in the use of re�ective metallic substrates, which
also appear to enhance the Raman spectrum of samples de-
posited on the surface of these substrates.

�in-�lm aluminium coated glass slides have been used as
a substrate for biological samples in a number of studies in-
volving Raman spectroscopy including for urine cytology11,
the study of lung cells16 and cervical tissue17 samples. An
enhancement in the intensity of the Raman spectrum of ep-
ithelial cells deposited on re�ective Aluminium on glass sub-
strates was �rst identi�ed in a recent study7 that compared
several di�erent substrates with respect to their suitability
for Raman spectroscopy with cytology samples using various
excitation wavelengths from 405nm up to 830nm. �ese sub-
strates included glass, CaF2, fused silica, magnesium �uoride,
and thin-�lm aluminium on glass as well as others. It was
found that the aluminium coated slides had the lowest back-
ground signal of all the substrates measured including for NIR
excitation wavelengths of 785nm and 830nm. Based on the
relatively intense Raman spectra recorded from cheek cells
on these substrates, the authors suggested that the re�ection
provided by these substrates could provide up to four times
more Raman sca�ered photons than transparent substrates
due to a double pass of the laser through the sample as well
as the collection of forward sca�ered photons. Following this
work, inexpensive aluminium foil taped onto glass slides was
investigated as a suitable substrate for the Raman analysis of
histological and cytological samples.18,19

Following this, mirrored stainless steel slides were inves-
tigated as suitable substrates for Raman spectroscopy with
785nm excitation.20 Formalin �xed para�n embedded colon
tissue blocks were mounted on stainless steel slides as well
as on CaF2. In a separate experiment human bone osteosar-
coma cells were cultured on both of these substrates. �e
authors demonstrated an improvement in the signal to noise
ratio of samples recorded on steel compared with the same
samples on CaF2; an improvement of 1.43 was reported for
tissue samples and 1.64 for cells. In this paper, we perform a
similar investigation for the case of prostate cancer epithelial
cells deposited on 100nm thin-�lm gold on glass and we re-

port similar results with respect to the improvement in signal
to noise ratio.

Other related work includes the demonstration of enhance-
ments in Raman spectra for chemical samples placed on a re-
�ective substrate21 and in Ref.22 it was shown that a re�ective
silver-coated substrate o�ered an enhancement of the signal
from �uorescently labelled dog-kidney cells with an enhance-
ment of 3-4, which is similar to the level of enhancement of
intensity determined in this paper with respect to the Raman
spectrum. �e authors in that paper propose that the same
e�ect could be achieved with a thin-�lm gold substrate, with
the additional bene�t of having a high level of biocompatibil-
ity.

�e purpose of this paper is to build on this previous work
to investigate the potential of 100nm thin-�lm gold on glass
substrates for Raman cytology in conjunction with the �in-
Prep slide preparation standard. All samples presented in
this paper, regardless of substrate, were prepared using the
�inPrep standard, thus highlighting the applicability of this
methodology in a clinical se�ing. We investigate the adhe-
sion of cells to the surface of the gold using this standard
and compare with CaF2 and glass. �e background spectrum
from the thin-�lm gold is also compared with CaF2 and glass
and the enhancement of the signal to noise ratio of the cell
spectrum on the thin-�lm gold is investigated compared with
cells on CaF2. Multivariate statistical classi�cation of Raman
spectra of two prostate cell lines is demonstrated using both
CaF2 and thin-�lm gold on glass. �e work is contextualised
in terms of the recent progress in this area.

2 Methods

2.1 �in-�lm gold on glass substrates

�in-�lm gold on glass (2.5cm×7cm×1mm) substrates were
purchased from Deposition Research Laboratory Inc. at a cost
of $5/slide. Prior to deposition, substrates were pre-cleaned
in vacuum using an ion source in a clean room se�ing. A ti-
tanium adhesion layer of 40nm thickness is �rst deposited,
followed by a gold layer of thickness 100nm. Films were de-
posited in a dedicated physical vapor deposition system us-
ing an electron-gun in high vacuum. Physical thickness was
measured using on-site interferometer.

2.2 Sample Preparation

High grade prostate cancer epithelium cells (PC3; Sigma-
Aldrich) and androgen-sensitive human prostate adenocarci-
noma (LNCaP, Sigma-Aldrich), were cultured in 1:1 mixture
of DMEM and Hams-F12 medium supplemented with 5% fetal
bovine serum and 2 mM LGlutamine. Flasks were maintained
in a humidi�ed atmosphere with 5% CO2 at 37°C. When the
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cell lines reached 80% con�uency, the culture medium was
removed, and the cells were rinsed with sterile PBS. Trypsin-
EDTA (0.5%) was added to the �ask, which was incubated at
37°C until the cells had completely detached (not exceeding
15 min). An equal volume of 5% serum-containing medium
was added to the �ask to neutralise the trypsin enzyme. �e
entire contents of the �ask was transferred into a sterile con-
tainer, and centrifuged at 1200 rpm for 5 min. �e super-
natant was removed, and the cell pellet was resuspended in
fresh medium. �is solution was centrifuged at 1200 rpm for
5 min, the medium decanted, and resuspended in 1 ml PBS.
�is step was repeated and the cell pellets were resuspended
into a vial containing 20 ml of a methanol based �xative (Pre-
servCyt; Hologic, USA), and le� at room temperature for 15
min. �e vial was inserted into a �inPrep 2000 (T2; Hologic,
USA) machine, and the cells were transferred on to either a
gold coated glass slide (100nm gold thin �lm on glass; Depo-
sition Research Laboratory Inc., USA), a CaF2 (Raman Grade;
Crystran, UK) slide, or a glass slide (�inPrep slide; Hologic,
USA). �e �inPrep standard has previously been shown to
be compatible with Raman. microspectroscopy.9,13 Images of
the LNCaP cells on the three substrates are shown in Fig. 1.
�e image of the CaF2 and glass substrates was recorded us-
ing an Olympus IX81 inverted transmission microscope while
the image of the gold substrate was recorded using a BX51
in re�ection mode. �e same camera (Amscope MU-300) was
used to record all of the images shown in the �gure and for all
three substrates, the 4x and 50x images were recorded using
Olympus PlanN 4×/0.1 and UMPlanFl 50×/0.8 microscope
objectives

2.3 Spectral Acquisition

All spectra were recorded using a HORIBA Jobin Yvon HR 800
(Villeneuve d’Ascq, France) Raman spectrometer, which was
coupled to an Olympus BX41 upright microscope equipped
with a 100x objective (MPlanN, Olympus, NA = 0.9) and a
785.16 nm diode laser source (300 mW). Raman sca�ering
was collected through a 400 µm confocal hole onto a back
illuminated air-cooled CCD detector with 13.5 µm pixel size
(Synapse; Horiba, Villeneuve d’Ascq, France) for the range
of 500-1800 cm−1 using a 300 lines mm−1 di�raction grating,
yielding a dispersion of ∼1.5 cm−1 per CCD pixel. �e in-
strument was calibrated using the 520 cm−1 silicon peak. All
Raman spectra were recorded from single acquisitions of 20s
duration from a di�raction limited spot on the cell nucleus.
Spectra were recorded from 52 PC3 cells on CaF2, 52 LNCap
cells on CaF2, 52 PC3 cells on gold, and 52 LNCap cells on
gold.

Fig. 1 Images of cells on substrates. Images recorded from a
CaF2 slide, a 100nm thin-�lm gold slide, and a glass �inPrep slide.
All three slides were prepared using the �inPrep processor using
the same concentration of LNCaP cells. �e area of the 4× images
is 8mm2 and the area of the 50× images is 0.65mm2
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2.4 Processing of Raman Spectra

Cosmic ray removal was implemented using the approach
outlined in23 followed by application of an Extended Multi-
plicative Signal Correction (EMSC) algorithm.10,24 �is algo-
rithm computes a background signal in the form of a baseline
N order polynomial (to remove the baseline signal that results
from �uorescent signals or stray light due to Mie sca�ering25)
plus the background signal from the substrate. Brie�y de-
scribed, the EMSC algorithm applies a least squares �t to (i)
a reference Raman spectrum from a cell; and (ii) an N order
polynomial. �e algorithm returns the weight of (i), which
enables normalisation of the spectrum relative to the refer-
ence, as well as the the polynomial. �e EMSC-corrected
spectrum, X , is given by:

X =
X0 −∑

N
m=0 cmPm

cr
(1)

where X0 is the raw data, Pm denotes the mth order of the
polynomial, cm is the corresponding polynomial coe�cient,
and cr is the weight of the cell reference spectrum, R. In sum-
mary, X0 can be described as the linear (weighted) superposi-
tion of R, and P. It has been shown that the use of a high or-
der polynomial does not result in over-��ing with the EMSC
algorithm.26 For this study, a seventh order polynomial was
used in the EMSC subtraction algorithm for all datasets, and
similar results were found using lower orders.

�e reference cell spectrum provides the basis for all of the
spectra to be ��ed; the reference spectrum used here is the
mean spectrum of all of the raw spectra recorded from all cells
on both the thin-�lm gold on glass and CaF2 substrates. In
order to remove any potential bias, the same reference spec-
trum was used for the EMSC algorithm applied to process the
spectra of all cells that are investigated in this paper.

Multivariate statistical analysis was applied to the EMSC
corrected Raman spectroscopic data for classi�cation using
Principle Components Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA). PCA was directly applied using the ‘pca’
function in MATLAB to the four datasets recorded from cells
on thin-�lm gold and CaF2 following the processing as de-
scribed above. Subsequenty LDA was also applied using the
’�tcdiscr’ function in MATLAB; the PCA scores accounting
for 95% of the variance were included in the LDA and the
performance of the classi�cation was evealuated with Leave-
One-Out (LOO) cross validation. In advance of PCA, all spec-
tra were also smoothed with a Savitzky-Golay �lter27 (poly-
nomial order = 3; window size = 11) in order to reduce the
e�ect of noise.

Fig. 2 Method for estimating the SNR of a spectrum. Spectra
have been o�set for clarity. S is the maximum value in the
reference cell spectrum.

2.5 Signal to Noise Ratio

�e SNR at a single point in the spectrum may be de�ned as
follows:23,28,29

SNR =
it√

t(i+ c)+ r2
(2)

where i represents the mean spectral irradiance at the sample
point (i.e. on one pixel), t is the acquisition time, c is the mean
rate of dark current generation (within the pixel), and r is the
standard deviation of the read noise. �e irradiance and dark
current are modelled by a Poisson distribution and the read
noise is modelled by a Gaussian distribution. �e values of c
and r can be obtained from the CCD speci�cation sheet. �e
de�nition in Equation 2 relates to the SNR at a single point in
the spectrum. However, in an experimental context, an esti-
mate for the mean SNR of the spectrum is more practical. For
all of the experimental results that follow, the SNR is mathe-
matically de�ned as follows:

SNR =
S
σ

(3)

where S is the maximum value of R, as described in the previ-
ous section, and σ is the standard deviation of the total noise
in X . σ is calculated from X by subtracting a SG smoothed
version (polynomial order = 3, window size = 9) of X in order
to isolate the noise signal.30 �e value of S is taken from the
reference spectrum, R, rather than the corrected spectrum,
X , in order to exclude the a�ect of noise from the measure-
ment of S, which can distort the measurement of the SNR.
�e method to calculate SNR is illustrated in Fig. 2.
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3 Results

3.1 Cell adhesion using the �inPrep processor

In total 10 images at 4×magni�cation, similar to those shown
in Fig. 1, were recorded at random positions on each of the
three slides and ImageJ was used to identify and count in-
dividual cells. �e resulting average cell count and standard
deviation on CaF2 were calculated to be 137.63 cells/mm2 and
70.90 cells/mm2. For glass these values were 213.47 cells/mm2

and 48.02 cells/mm2, and for thin-�lm gold on glass the val-
ues were 213.5 cells/mm2 and 16.98 cells/mm2.

3.2 Background spectra from100nm thin-�lmgold on
glass substrate

In Fig. 3, spectra recorded from the CaF2, glass, and thin-
�lm gold on glass substrates are shown; for all three cases,
the laser was focused on the surface of the substrate to a
di�raction limited spot using the system described in Sec-
tion 2. In order to obtain a spectrum over a wider bandwidth
from 200cm−1 up to 3600−1, the grating was scanned, and
multiple spectra were recorded and stitched together. �e
background spectrum is also shown, which is the result of
recording a signal when the laser is active but no sample is
present; this spectrum is made up of camera dark current,
ambient light, and sca�ering from various optical elements
in the system. Neglecting the variation in noise, this back-
ground will be present in the spectra recorded from the three
substrates. For each of the four cases shown in the �gure, 10
spectra were recorded with acquisition times of 20s and aver-
aged together. Other than cosmic ray removal no processing
has been applied to the raw spectra.

Fig. 3 Comparison of the spectra recorded from substrates;
Raman grade CaF2 slide (red), �inPrep glass slide (green), 100nm
thin-�lm gold on glass substrate (blue) and a background spectrum
recorded when no sample was present (black). In all cases, the
785nm wavelength laser was focused onto the surface of the
substrate with a total acquisition time of 200s; (i) shows a
su�ciently large range of intensity in order to fully capture the
glass spectrum and (ii) shows a reduced (0.13 times) range in order
to display more detail on the thin-�lm gold and CaF2 spectra.

3.3 Classi�cation of cell lines on di�erent substrate

�e raw spectra recorded from the PC3 and LNCap cell lines
on both thin-�lm gold on glass and CaF2 are shown in Fig.
4 (i) and (ii) following cosmic ray removal. It should be
noted that no scaling or intensity shi� has been applied; the
spectra shown in Fig. 4 (i) and (ii) are shown on the same
axis and with the same relative intensity as when they were
recorded. On average, the spectral intensities of the cell spec-
tra recorded from both cell lines on the thin-�lm gold is simi-
lar and is ∼3 times that of the spectral intensities recorded on
the CaF2. �e corresponding datasets a�er EMSC correction
are shown in Fig. 4 (iii) and (iv). It is clear from these �gures
that there exists signi�cantly less variance across the datasets
recorded from the thin-�lm gold on glass substrate, particular
in the wavenumber band around 900 cm−1 and in the band
1200 cm−1 - 1400 cm−1. �is is illustrated more clearly in
Fig. 4 (v) and (vi) in which the mean spectra and standard de-
viation are shown for each of the EMSC corrected datasets.
�e di�erence in spectral intensity is further investigated by
calculating the SNR of the spectra recorded from both sub-
strates using the method described in Section 2.5. Although
both datasets appear similar a�er normalisation, the spectra
from cells on thin-�lm gold exhibit a higher SNR; the results
are shown using a box and whisker plot in Fig. 5. �e mean
SNR for the PC3 and LNCaP cell spectra were 141.2 and 146.4
for the thin-�lm gold on glass substrate, respectively. �e
corresponding SNR values for the CaF2 substrate were 88.4
and 86.2. �e thin-�lm gold substrate shows a consistently
higher SNR than that of their CaF2 counterparts as well as a
smaller standard deviation of SNR values.

PCA is applied in order to investigate (i) the variation be-
tween the spectra recorded across both cell lines for each sub-
strate type and (ii) the di�erence in the separation of the same
cell line across the two substrates individually. �e results are
shown in Fig. 6 and Fig. 7, in which the same colour codes
for the four cell groups as have appeared elsewhere in this pa-
per. For each case, only the principal components (PrC) are
shown for which there is a clear separation of the scores. In
Fig. 6 (i), the mean spectra of PC3 and LNCaP deposited on
thin-�lm gold on glass are shown as well as the second prin-
cipal component, PrC2 following PCA of these two datasets.
PrC1, PrC2, and PrC3 account for 56.3%, 7%, and 3.4% of the
variance, respectively, and PrC2 primarily accounts for the
separation between the two datasets; (ii) shows the corre-
sponding sca�er plot. Corresponding results are shown for
both cell lines when deposited on CaF2 in Fig. 6 (iii) and
(iv). In this case PrC1, PrC2, and PrC3 account for 26.5%,
16.1%, and 5.2% of the variance, respectively. In this case
the scores are separated in both PrC1 and PrC2. Prominent
peaks in the relevant loading(s) have been highlighted for
both cases and a close correlation is observed in the peak re-
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Fig. 4 Raw and processed spectral datasets recorded from two prostate cell lines on CaF2 and thin-�lm gold substrates �ese
�gures illustrate the di�erence in spectral quality of cell spectra recorded from two cell lines on thin-�lm gold on glass and CaF2. �e raw
unscaled spectra are shown in (i) for cell line PC3 and (ii) for cell line LNCaP. Note, the intensity of the cells on thin-�lm gold on glass is ∼3
times higher. In (iii) and (iv) the EMSC corrected datasets are shown and the two groups are shi�ed in the intensity axis for ease of
comparison. In (v) and (vi) the mean spectrum and ±6σ of each sample point are shown for each of the four datasets shown in the previous
two �gures.
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Fig. 5 Comparison of SNR values for di�erent substrates.
�e average value of enhancement provided by the re�ective
thin-�lm substrates is 1.65. A comparative boxplot of SNR
values for both cell lines across CaF2 and 100nm thin-�lm gold on
glass substrates.

gions that are relevant to classi�cation. �ese include regions
around numerous spectral peaks that have previously been
noted in the classi�cation of prostate and bladder cells, in-
cluding 792 (DNA), 938 (proteins), 1002 (Phenylalanine; Pro-
tein), 1058 (DNA, lipids), 1089 (DNA), 1252 (Amide III), 1302
(CH2; lipids) 1340 (CH2/CH3 wagging of nucleic acids), 1459
(DNA), 1484––1574 (DNA), and 1676 (Amide I) cm−1.9,10,30,31.
LDA was applied to the PC scores accounting for 95% of the
variance and evaluated using a LOO cross validation. For the
case of the thin-�lm gold on glass substrate, 38 principal com-
ponents were included in the analysis and the sensitivity and
speci�city were both 98%; for the CaF2, 64 principal compo-
nents were included in the analysis and the sensitivity and
speci�city were 98% and 96%, respectively.

In order to further investigate the e�ect of the substrates,
PCA was also applied to examine the variation in spectra
recorded from the same cell line across the two substrate
types; these results are presented in Fig. 7. For the case of
LNCaP cell spectra, PrC1, PrC2, and PrC3 account for 34.6%,
14.5%, and 5.2% of the variance, respectively and for the PC3
cell spectra, PrC1, PrC2, and PrC3 account for 25.8%, 19.7%,
and 6.6% of the variance, respectively. Although the scores
are clearly separating for both sets of analysis, there appears
to be no obvious relationship in the loadings that relate to
this separation.

Fig. 6 PCA analysis of two cell lines for the case of CaF2 and
separately for the case of thin-�lm gold substrates.
Separation is observed with either substrates, based on
similar spectral di�erences. (i) Mean LNCaP and PC3 cell
spectra on thin-�lm gold on glass as well as the PCA loading
providing maximum separation; (ii) Corresponding sca�er plot;
(iii) Mean spectra of LNCaP and PC3 deposited on CaF2 as well as
the two PCA loadings that provide maximum separation; (iv)
Corresponding sca�er plot.

4 Discussion

4.1 Cell adhesion using the �inPrep processor

�e �inPrep processor employs the use of �lter membranes
that collect the cells on their surface following a vacuum op-
eration. �e membrane is subsequently inverted and gently
pressed against the substrate. �e 100nm thin-�lm gold and
glass substrates were found to provide very similar levels of
cell adhesion, while the CaF2 provided signi�cantly less adhe-
sion when used with the �inPrep processor indicating that
the surface properties of the gold are more suitable for cel-
lular adhesion using the �inPrep standard. Further works
is required to investigate if other re�ective substrates such
as stainless steel20 can achieve similar results in this regard.
It should be noted that that not all re�ective substrates are
as chemically stable as the thin-�lm gold on glass substrates
used in this paper. In the course of this work, aluminium
slides (100 nm Al deposited on glass) were investigated but
were found to be reactive with the methanol �xative (Pre-
servcyt) used to preserve the cells, which is supplied as a con-
sumable to be used with the �inPrep protocol.
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Fig. 7 PCA analysis to investigate why spectra of the same
cell line are di�erent when recorded from CaF2 and
thin-�lm gold substrates. (i) Mean LNCaP cell spectra recorded
on thin-�lm gold on glass and CaF2 as well as the PCA loading
providing maximum separation between these two datasets; (ii)
Corresponding sca�er plot; (iii) mean spectra of and PC3 cells
deposited on thin-�lm gold on glass and CaF2 as well as the PCA
loading that provides maximum separation; (iv) Corresponding
sca�er plot.

4.2 Background spectra from thin-�lm gold on glass
substrate

Referring to Fig. 3, the spectrum of the CaF2 substrate has
a prominent sharp peak at 321cm−1 and at other wavenum-
bers the intensity is approximately equal to that of the back-
ground. In contrast, the glass slide has an intense spectrum,
particularly in the band between 1000-2000cm−1. �is spec-
trum has been a�ributed to the presence of active lumines-
cent ion impurities in glass.32 and has been shown to vary
in pro�le and to increase in intensity as the source laser
moves from the blue region up to the NIR region,7 making a
laser in the lower end of the visible spectrum more desirable
for Raman spectroscopy applied to clinical cytology samples
mounted on glass.9.

�e spectrum recorded from the gold thin-�lm surface is
also shown in Fig. 3. Although signi�cantly weaker than
the glass spectrum (the maximum values di�er by a factor
of 0.12), the spectrum is appreciably stronger than the spec-
trum of the CaF2. It has been shown that the transmi�ance of
gold �lms of 100nm thickness is close to zero33,34 and, there-
fore, it is likely that this spectrum originates primarily from
the gold layer, and not from the titanium or glass. �e phys-

ical process that generates the spectrum recorded from the
gold has not been determined but it was possible to con�rm
that the pro�le of the spectrum changes when a 532nm laser
source was focused on the surface (not shown here). At the
time of writing. it was not possible to determine the purity of
the gold used in the manufacture of the thin-�lm gold slides.
It may be possible that similar to the case of glass, impurities
in the gold contribute to a wavelength dependent photolumi-
nescence spectrum but further work is required to con�rm
this hypothesis.

Although the background spectrum from the gold �lm
is appreciably large when compared with the spectrum
recorded form the CaF2 substrate, features of the gold spec-
trum do not appear to be present in the spectra recorded from
cells deposited on the gold surface shown in Fig. 4. Typically,
when recording Raman spectra from a substrate that gener-
ates a background spectrum, this background spectrum will
appear in varying amounts in the recorded spectra; see Ref.10

for an example of the glass background spectrum contami-
nating cell Raman spectra in varying amounts using 532nm
excitation. In such cases, the variance of the spectral dataset
is relatively large in areas in which the background spectrum
is more intense; this is not found to be the case here. Fur-
thermore, there is no clear evidence of features if the spec-
tral pro�le of the gold background spectrum appearing in the
loadings of the PCA analysis presented in Fig. 7, in which
the same cell lines on CaF2 and thin-�lm gold on glass were
directly compared. �e spreading out of the laser at the gold
surface (during recording of a cell spectrum, the laser is fo-
cused on the cell nucleus at a point that is at least 1um from
gold surface.), the short penetration depth of light in gold33,
and the e�ect of the confocal aperture35 all appear to reduce
the presence of background spectrum from the gold in the
Raman spectrum of the cell.

Another point of note relates to the re�ectivity of gold as
a function of wavelength. It has previously been shown that
the re�ectivity of gold in the NIR is >0.95 but that this drops
rapidly over the visible region to <0.3 in the UV.33 It is likely,
therefore, that the enhancement in Raman intensity that is re-
ported in this study may not be reproducible for Raman spec-
troscopy with lower wavelengths. More work is also needed
to fully characterise the background spectrum from the gold
at other wavelengths.

4.3 Enhancement of the Signal-to-Noise Ratio

�ere are a number of interesting observations that can be
made from the SNR analysis presented in Fig. 5. Most notably,
the mean SNR value of all the spectra recorded from cells on
thin-�lm gold on glass is 143.8 and the mean SNR from cells
on CaF2 is 87.3. �e ratio of these to values is 1.65, which is
approximately the square root of the ratio of the mean inten-
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sities of the raw spectral data recorded from both substrates,
shown in Fig. 4 (i) and (ii). �is result is roughly in agreement
with what would be expected given the square root relation-
ship between the intensity and shot noise, taking into account
the relatively low values of c and r. Remarkably, this result
is almost identical to the value of 1.64 times enhancement in
SNR that was reported for a similar investigation using cells
grown on re�ective stainless steel substrate and CaF2.20 It is
likely that the enhancement provided by other re�ective sub-
strates will be similar to those reported from thin-�lm gold
and stainless steel provided that the re�ectivity of the metal
is high over the wavelength range of interest.

�e model that has been proposed for this enhancement7,20

is that the re�ective substrate allows for forward sca�ered
Raman photons, which would be lost through a transparent
substrate, to be re�ected back towards the microscope objec-
tive and collected. �e result is an approximate doubling in
Raman intensity. Secondly, the source laser is also re�ected
backwards, e�ectively doubling the excitation power in the
sample. �erefore, for thin samples, re�ective substrates will
yield a maximum of quadruple the spectral intensity, com-
pared with those recorded from samples deposited on a trans-
parent substrate, resulting in an approximate doubling of the
SNR as a direct consequence. For thicker samples, the focal
point of the laser must be positioned further from the sub-
strate surface and it can, therefore, be expected that the spec-
tral intensity will increase by a factor of up to 4 and the in-
crease in SNR will be up to a factor of 2.

4.4 Classi�cation of cell lines on di�erent substrate

It can be inferred from PCA results that shown in Fig. 6 that
approximately the same biomolecular di�erences account for
the separation of the two prostate cell lines regardless of sub-
strate. Although there are clear similarities between in the
Principal Components for both cases, there are also clear dif-
ferences. It is di�cult to account for the precise reasons for
these di�erences since spectra recorded from the same two
cell lines (taken from the same batch and recorded on the
same day) have been compared for both cases. Given that the
surface properties appear to a�ect the adhesion of the cells in
di�erent ways, it is possible that the surface properties also
a�ect the Raman spectra that are recorded from the cells. �e
second PCA analysis shown in Fig. 7 a�empted to elucidate
the di�erences in spectra recorded from the same cell line
across the two substrates; however, this analysis did not re-
veal any commonality in the features causing separation for
the two cases. It is possible that the substrate surfaces a�ect
the individual cell lines in di�erent ways. More work is re-
quired to fully understand this phenomenon.

4.5 Biocompatibility

�is study focuses on the use of gold coated substrates with
�xed cells deposited using a commercial device for the prepa-
ration of cytology samples. �erefore, cytotoxicity issues as-
sociated with the surface properties of the gold were not con-
sidered. An active area of research is the interrogation of
living cells using Raman spectroscopy, which typically in-
volves growing cells directly onto a surface followed by Ra-
man spectroscopy. Substrate surface chemical reactivity is of
major importance if cells are to be grown on the substrate. Al-
though not investigated here, thin-�lm gold substrates may
also be useful for Raman studies involving cell growth. Gold
coated substrates such as those investigated in this study are
known to be compatible with live cell growth, which o�en in-
volves the functionalisation of the gold surface using mono-
layers of biochemicals that can be investigated for the capac-
ity to promote or inhibit cell growth.36–38 Similar thin-�lm
gold substrates as those used in this study have also previ-
ously been in the analysis of surface plasmon resonance for
the real-time observation of biomolecular interactions, which
involves the direct adhesion of the cells to the surface of the
gold.39,40 We are not aware of any reports that coated gold
substrates inhibit cell growth. Although, in recent work os-
teosarcoma cells were grown on stainless steel substrates for
analysis with Raman spectrocopy,20 thin-�lm gold substrates
may be preferable in terms of biocompatibility, with the lat-
ter having been shown to negatively impact on cell growth
in some cases.41,42

5 Conclusion

�e �rst conclusion from this paper is that a 100nm thin
�lm of gold on glass substrate provides superior performance
when compared with CaF2 for cytological samples prepared
with the �inPrep standard and analysed using Raman mi-
crospectroscopy. �e thin-�lm gold spectra performed 54%
be�er than the CaF2 with respect to cell adhesion and showed
similar levels of adhesion compared with �inPrep glass
slides. It was also demonstrated that the thin-�lm gold sub-
strates yield spectra with approximately three times the spec-
tral intensity and 1.65 times the SNR when compared with
CaF2. A relatively low intensity photoluminescence spec-
trum was recorded from the thin-�lm of gold but this does not
appear to contaminate the cell spectra recorded from its sur-
face; no evidence of this background spectrum could be found
in subsequent multivariate statistical analysis. �e gold sub-
strate is signi�cantly less expensive than Raman grade CaF2,
€5 per substrate compared with €100.

Principal components analysis was applied to spectra
recorded from two prostate cancer cell lines, which broadly
identi�ed di�erences in the same set of peak locations re-
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gardless of substrate type, many of which have previously
been highlighted in studies relating to bladder and prostate
cancer. �e results also demonstrate that the lower noise
spectra recorded from the gold substrates provided for sig-
ni�cantly be�er clustering of the data using PCA. We note,
however, that some spectral di�erences were observed across
the two substrates for the same cell lines; these di�erences do
not appear to be consistent for the two cell lines investigated
here; more work is required in order to understand this phe-
nomenon.

Remarkably, the results presented here with respect to the
enhancement of the signal to noise ratio of Raman spectra
are almost identical to those reported in a related study using
re�ective stainless steel substrates.20. �at study reported an
enhancement of 1.64 for spectra of osteo cells grown directly
on the substrate, compared with a value of 1.65 reported here
for prostate epithelial cells deposited onto the surface using
the �inPrep standard. It may be inferred, therefore, that any
suitably re�ective substrate will provide three fold increase in
Raman intensity, which will likely translate to a ∼ 66% reduc-
tion in acquisition time for equivalent spectral quality, which
may be a signi�cant consideration for some applications that
require a large number of repeated measurements, such as
the application of Raman cytology for diagnostics or map-
ping experiments. However, it is likely that di�erent re�ec-
tive substrates using various metals will have di�erent sur-
face properties that will a�ect cell adhesion or compatibility.

Re�ecting substrates appear to o�er an advantage for Ra-
man cytology with NIR excitation when compared CaF2 in
terms of both performance and cost. �e optimal type of re-
�ective substrate remains an open question and a subject for
future research. More work is required to investigate other
types of re�ective thin-�lm metallic deposition on glass, and
to evaluate all of the possible substrates in terms of cost, bio-
compatibilty, cell adhesion, and compatibility with related
chemicals.
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