161 research outputs found

    The controlled teleportation of an arbitrary two-atom entangled state in driven cavity QED

    Full text link
    In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state ϕ>12=agg>12+bge>12+ceg>12+dee>12|\phi>_{12}=a|gg>_{12}+b|ge>_{12}+c|eg>_{12}+d|ee>_{12} in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.Comment: 10 page

    Multipartite entangled states in coupled quantum dots and cavity-QED

    Get PDF
    We investigate the generation of multipartite entangled state in a system of N quantum dots embedded in a microcavity and examine the emergence of genuine multipartite entanglement by three different characterizations of entanglement. At certain times of dynamical evolution one can generate multipartite entangled coherent exciton states or multiqubit WW states by initially preparing the cavity field in a superposition of coherent states or the Fock state with one photon, respectively. Finally we study environmental effects on multipartite entanglement generation and find that the decay rate for the entanglement is proportional to the number of excitons.Comment: 9 pages, 4 figures, to appear in Phys. Rev.

    A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector

    Get PDF
    In this paper we consider a Beta Beam setup that tries to leverage at most existing European facilities: i.e. a setup that takes advantage of facilities at CERN to boost high-Q ions (8Li and 8B) aiming at a far detector located at L = 732 Km in the Gran Sasso Underground Laboratory. The average neutrino energy for 8Li and 8B ions boosted at \gamma ~ 100 is in the range E_\nu = [1,2] GeV, high enough to use a large iron detector of the MINOS type at the far site. We perform, then, a study of the neutrino and antineutrino fluxes needed to measure a CP-violating phase delta in a significant part of the parameter space. In particular, for theta_13 > 3 deg, if an antineutrino flux of 3 10^19 useful 8Li decays per year is achievable, we find that delta can be measured in 60% of the parameter space with 6 10^18 useful 8B decays per year.Comment: 19 pages, 10 figures, added references and corrected typo

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    A combined beta-beam and electron capture neutrino experiment

    Get PDF
    The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, theta_{13}, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the beta-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase delta and the theta_{13} angle, the CP-discovery potential and the reach to determine the type of neutrino mass hierarchy for this type of long baseline experiment. The analysis is performed for different neutrino beam energies and baselines. Finally, we also discuss how the results would change if a better knowledge of some of the assumed parameters was achieved by the time this experiment could take place.Comment: 35 pp, 11 fig

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for vector-like quarks and excited quarks in events containing a top quark and a W boson in the final state is reported here. The search is based on 20.3 fb−1 of proton-proton collision data taken at the LHC at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector. Events with one or two leptons, and one, two or three jets are selected with the additional requirement that at least one jet contains a b-quark. Single-lepton events are also required to contain at least one large-radius jet from the hadronic decay of a high-pTW boson or a top quark. No significant excess over the expected background is observed and upper limits on the cross-section times branching ratio for different vector-like quark and excited-quark model masses are derived. For the excited-quark production and decay to Wt with unit couplings, quarks with masses below 1500 GeV are excluded and coupling-dependent limits are set
    corecore