30 research outputs found

    Pulmonary Artery Aneurysm Dilemma in Pregnancy: A Case Report

    Get PDF
    Pulmonary Artery Aneurysm (PAA), defined as greater than 40 mm dilation of the main pulmonary artery wall, in female and above 43 mm in males is a rare and fatal defect. Since there is a high risk for rupture, especially in cases of symptomatic or severe dilatation, surgical intervention is suggested. There is no recommendation about therapeutic methods based on the diameter of the pulmonary aneurysm in pregnancy in the guidelines. In this rare and unique report, we described a 26-year-old pregnant woman with previous history of biologic pulmonary valve replacement referred to the joint clinic of heart disease and pregnancy at 15 weeks of pregnancy because transthoracic echocardiography showed an aneurysm of the main pulmonary artery (55mm). Due to pulmonary artery diameter and risk of dissection, we informed her about the risks and recommended therapeutic abortion, but she refused and, fortunately no complication occurred during close observation in pregnancy and few months later. There is no specific recommendation about therapeutic methods based on the diameter of the pulmonary aneurysm in pregnancy in the guidelines, but referring to the aortic aneurysm guidelines recommendation, pregnancy termination when PA diameter > 5.5 cm because of the higher risk of dissection. Other factors should be considered to determine the risk of dissection in pregnancy include; categorized PA aneurysms to high or low intravascular PA pressure, PA diameter growth rate, and causative mechanisms. Thus, if pregnancy occurs, decisions about each patient will vary depending on risk factor

    Human sit-to-stand transfer modeling towards intuitive and biologically-inspired robot assistance

    Get PDF
    © 2016, Springer Science+Business Media New York. Sit-to-stand (STS) transfers are a common human task which involves complex sensorimotor processes to control the highly nonlinear musculoskeletal system. In this paper, typical unassisted and assisted human STS transfers are formulated as optimal feedback control problem that finds a compromise between task end-point accuracy, human balance, energy consumption, smoothness of motion and control and takes further human biomechanical control constraints into account. Differential dynamic programming is employed, which allows taking the full, nonlinear human dynamics into consideration. The biomechanical dynamics of the human is modeled by a six link rigid body including leg, trunk and arm segments. Accuracy of the proposed modelling approach is evaluated for different human healthy and patient/elderly subjects by comparing simulations and experimentally collected data. Acceptable model accuracy is achieved with a generic set of constant weights that prioritize the different criteria. Finally, the proposed STS model is used to determine optimal assistive strategies suitable for either a person with specific body segment weakness or a more general weakness. These strategies are implemented on a robotic mobility assistant and are intensively evaluated by 33 elderlies, mostly not able to perform unassisted STS transfers. The validation results show a promising STS transfer success rate and overall user satisfaction

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Contribution à l'élaboration d'un système de gestion des piles à combustible

    No full text
    The essential challenge in using renewable energy-based electricity generation is the intermittency of resources. Therefore, new ways to store electricity is inevitable. Hydrogen as an energy carrier can deal with this issue. Hydrogen can be produced by using the excess energy of renewable energy sources. Therefore, a Polymer Electrolyte Membrane Fuel Cell (PEMFC) as a device that can directly convert hydrogen energy to electricity is an important part of this solution. The cost and durability are the major challenges to enable the diffusion of this technology in the mass market. In the frame of a multi-vectors microgrid, a Fuel Cell Management System (FCMS) is proposed and designed in this thesis that allows optimizing the reliability and life of PEMFCs through controlling the operating condition of cells to avoid electrochemical instabilities. A proposed diagnostic method along with a new hybrid power electronics architecture is the core of this FCMS. The diagnostic method can detect most of the FCMS instabilities by a new comprehensive real-time model. This model can simulate a cell in its stack environment. A hybrid power electronics architecture is developed for this FCMS that guarantees better aging of the system by separately manipulating the supplied power of cells. The proposed power electronics architecture is hybridized by a Supercapacitor (SC) that can compensate for the low dynamic of PEMFCs in supplying the fast dynamic load profiles. A Fuzzy Logic Control (FLC) method is developed as a part of the FCMS to change the reference power of the cell groups based on the model data. The proposed system and its different parts are validated through the simulation and experimental results.L'intermittence des ressources constitue le principal défi de l'utilisation de la production d'électricité à partir d'énergies renouvelables. Par conséquent, de nouveaux moyens de stockage de l'électricité sont inévitables. L'hydrogène, en tant que vecteur énergétique, peut résoudre ce problème. L'hydrogène peut être produit en utilisant l'énergie excédentaire des sources d'énergie renouvelables. C'est pourquoi une pile à combustible à membrane électrolytique polymère (PEMFC), en tant que dispositif capable de convertir directement l'énergie de l'hydrogène en électricité, est un élément important de cette solution. Le coût et la durabilité sont les principaux défis à relever pour permettre la diffusion de cette technologie sur le marché de masse. Dans le cadre d'un micro-réseau multi-vecteurs, un système de gestion des piles à combustible (FCMS) est proposé et conçu dans cette thèse. Il permet d'optimiser la fiabilité et la durée de vie des PEMFC en contrôlant l'état de fonctionnement des cellules pour éviter les instabilités électrochimiques. Une méthode de diagnostic ainsi qu'une nouvelle architecture d'électronique de puissance hybride sont le cœur de ce FCMS. La méthode de diagnostic peut détecter la plupart des instabilités du FCMS grâce à un nouveau modèle en temps réel. Ce modèle peut simuler une cellule dans son environnement de pile. Une architecture d'électronique de puissance hybride est développée pour ce FCMS qui garantit un meilleur vieillissement du système en contrôlant séparément la puissance fournie par les cellules. L'architecture d'électronique de puissance proposée est hybridée par un supercondensateur (SC) qui peut compenser la faible dynamique des PEMFC en fournissant les profils de charge dynamiques rapides. Une méthode de contrôle en logique floue (FLC) est développée dans le cadre du FCMS pour modifier la puissance de référence des groupes de cellules sur la base des données du modèle. Le système proposé et ses différentes parties sont validés par les résultats de la simulation et de l'expérimentation

    Transitioning solidification mode via electroplated Ni coatings in martensitic stainless steel resistance spot welds: new insights into fabricating tough microstructure

    No full text
    Abstract The present study addresses the enhancement of fracture toughness of martensitic stainless steel (MSS) spot welds by utilizing through electroplating of Ni on MSS sheets. The equilibrium and non-equilibrium solidification modelling showed that by Ni coating with 50 μm thick on 1.5 mm thick MSSs, the solidification mode changes from δ-ferrite to γ-austenite, leading to a weld nugget (WN) dominated by austenite grains. Moreover, electron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) showed that the other phases (martensite, δ-ferrite) appeared in band areas of WN owing to incomplete mixing of MSS and the Ni-coating. The tough microstructure in the Ni-coated MSS spot welds provided superior mechanical properties compared to non-coated welds, both in cross-tension (CT) and tensile-shear (TS) tests. Notably, the TS and CT strengths of the Ni-coated MSS spot welds showed a remarkable increase of 57% and 127%, respectively, in comparison to the conventional bare MSS spot welds. Furthermore, in terms of failure energy, the Ni-coated MSS spot welds demonstrated a substantial enhancement of 296% in TS and 520% in CT, when compared to their non-coated counterparts. This research study showcased the effectiveness of Ni electroplating as an industrial method for improving the spot weldability of MSSs

    The enzymes and electrolytes profiles in sera of Iranian stray dogs naturally infected with Neospora caninum

    No full text
    The protozoan Neospora caninum (Apicomplexa: Sarcocystidae), respectively infects canids and ruminants as the most definitive and intermediate hosts. A diagnosis of neosporosis is generally made on the basis of clinical signs together with the detection of high levels of antibodies in serum. The present study compares the serum electrolyte profile (Ca, K, Mg, Na, P) and serum enzyme level (ALP, AST, CPK) of non-infected dogs with those of stray dogs naturally infected with N. caninum. The indirect fluorescent antibody test (IFAT) revealed that 17 of the 137 analysed serum samples (12.41%) of the stray dogs were seropositive (Sp) to N. caninum. Serum levels of theelectrolytes and the enzymes were evaluated in the 17 Sp and 28 seronegative (Sn, 20.44%) dogs using common enzyme kits, spectrophotometry and flame photometry techniques. The average serum level of ALP, AST, and CPK were found to be significantly higher in the Sp stray dogs. Measurements of the average serum levels of Ca, K, Mg, and P were higher in Sp than Sn stray dogs, with the average K level being significantly higher in seropositive stray dogs. It was concluded that evaluation of serum enzyme and electrolyte levels may be used to screen N. caninum infection in stray dogs

    Association between adherence to a low carbohydrate dietary (LCD) pattern with breast milk characteristics and oxidative markers in infants’ urine: a cross-sectional study

    No full text
    Abstract Background Breast milk (BM) is a dynamic fluid that varies over time and between women. The variations in BM components are most likely associated with maternal diet quality. This study aimed to assess adherence to a low carbohydrate dietary (LCD) pattern with oxidative stress markers of BM characteristics and infants’ urine. Materials and methods In this cross-sectional study 350 breastfeeding mothers and their infants were recruited. BM samples were collected from mothers, and urine specimens were obtained from each infant. To evaluate LCD scores, subjects were divided into 10 deciles according to the percent of energy obtained from carbohydrates, proteins, and fats. Determination of total antioxidant activity was conducted using the ferric reducing antioxidant power (FRAP), 2, 2′-diphenyl-1-picrylhydrazyl (DPPH), thiobarbituric acid reactive substances (TBARs), and Ellman’s assay. Biochemical assays of samples including calcium, total protein, and triglyceride level were also performed using commercial kits. Results Participants with the greatest LCD pattern adherence were placed into the last quartile (Q4), and those with the minimum LCD were in the first quartile (Q1). Individuals in the highest LCD quartile had significantly higher levels of milk FRAP, thiol, and protein, as well as infant urinary FRAP and lower milk MDA levels than those in the lowest quartile. Multivariate linear regression analyses indicated that higher score of the LCD pattern was associated with a higher level of milk thiol, protein, and lower level of milk MDA (p < 0.05). Conclusion Our findings show that adherence to a LCD, as defined by a low level of carbohydrates in daily food intake, is linked with improved BM quality and markers of oxidative stress in infant urine
    corecore