1,973 research outputs found

    From planning the port/city to planning the port-city : exploring the economic interface in European port cities

    Get PDF
    In last three decades, planning agencies of most ports have institutionally evolved into a (semi-) independent port authority. The rationale behind this process is that port authorities are able to react more quickly to changing logistical and spatial preferences of maritime firms, hence increasing the competitiveness of ports. Although these dedicated port authorities have proven to be largely successful, new economic, social, and environmental challenges are quickly catching up on these port governance models, and particularly leads to (spatial) policy ‘conflicts’ between port and city. This chapter starts by assessing this conflict and argue that the conflict is partly a result of dominant—often also academic—spatial representations of the port city as two separate entities. To escape this divisive conception of contemporary port cities, this chapter presents a relational visualisation method that is able to analyse the economic interface between port and city. Based on our results, we reflect back on our proposition and argue that the core challenge today for researchers and policy makers is acknowledging the bias of port/city, being arguably a self-fulfilling prophecy. Hence, we turn the idea of (planning the) port/city conflicts into planning the port-city’s strengths and weaknesses

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    Cracking in asphalt materials

    Get PDF
    This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft

    Caregiver stress in traumatic brain injury

    Get PDF
    Aims Many patients experience physical, behavioural, cognitive and emotional problems following traumatic brain injury (TBI). They may require continuing care for many years, most of which is provided by informal caregivers, such as spouses, parents, or other family members. The caregiving role is associated with a range of adverse effects including anxiety, depression, poor physical health and lowered quality of life. This article explores issues around caregiver stress; highlighting interventions for this group and areas for further research. Methods Literature exploring the impact of caregiving, its influencing and alleviating factors and interventions for caregivers of people with TBI is discussed, with brief critical analysis of key studies. Findings Research suggests that caregiver characteristics, coping strategies, their appraisal of the situation and social networks may be associated with the amount of distress experienced. Many caregivers have unmet needs such as respite care and information provision on TBI. Providing information may help to alleviate strain. Community-based family therapies providing education, support and counselling can help to decrease distress and improve aspects of family functioning, although evidence for these is lacking. Conclusions There is a need for more well-designed, controlled studies evaluating the impact of interventions to alleviate caregiver strain

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A functional SUMO-motif in the active site of PIM1 promotes its degradation via RNF4, and stimulates protein kinase activity

    Get PDF
    The PIM1 serine/threonine protein kinase mediates growth factor and survival signalling, and cooperates potently with c-MYC during tumorigenesis. PIM1 is overexpressed in many human cancers and is a promising target for drug development. PIM1 levels are regulated mainly through cytokine-induced transcription and protein degradation, but mechanisms regulating its activity and levels remain largely unexplored. Here, we show that PIM1 is modified in vitro and in cultured cells by the Small ubiquitin-like modifier (SUMO) on two independent sites: K169, within a consensus SUMOylation motif (IK169DE171) in the active site of PIM1, and also at a second promiscuous site. Alanine substitution of E171 (within the consensus motif) abolished SUMOylation, significantly increased the half-life of PIM1, and markedly reduced its ubiquitylation. Mechanistically, SUMOylation promoted ubiquitin-mediated degradation of PIM1 via recruitment of the SUMO-targeted ubiquitin ligase, RNF4. Additionally, SUMOylated PIM1 showed enhanced protein kinase activity in vitro. Interestingly, the E171A mutant was active in vitro but displayed altered substrate specificity in cultured cells, consistent with the idea that SUMOylation may govern PIM1 substrate specificity under certain contexts. Taken together, these data demonstrate that the protein kinase activity and levels of PIM1 can be regulated by covalent post-translational modification

    Individual-environment interactions in swimming: The smallest unit for analysing the emergence of coordination dynamics in performance?

    Get PDF
    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer’s movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers’ actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers’ movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamical interactions in competitive swimming within the theoretical framework of ecological dynamics

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    corecore