102 research outputs found

    PBR9 ASSESSING HEALTH-RELATED QUALITY OF LIFE IN ROMANIAN HAEMOPHILIACS

    Get PDF

    Normalization of Voltage-Sensitive Dye Signal with Functional Activity Measures

    Get PDF
    In general, signal amplitude in optical imaging is normalized using the well-established ΔF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the ΔF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the ΔF/F method may, to an extent, be mitigated by a novel method of normalization, ΔF/ΔFepileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of “hypersynchronized” bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional ΔF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization-independent metrics such as waveform propagation patterns, oscillations in single detectors, and phase relationships between detector pairs may better capture the biological information which is obtained by high-sensitivity imaging

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Non-Linear Population Firing Rates and Voltage Sensitive Dye Signals in Visual Areas 17 and 18 to Short Duration Stimuli

    Get PDF
    Visual stimuli of short duration seem to persist longer after the stimulus offset than stimuli of longer duration. This visual persistence must have a physiological explanation. In ferrets exposed to stimuli of different durations we measured the relative changes in the membrane potentials with a voltage sensitive dye and the action potentials of populations of neurons in the upper layers of areas 17 and 18. For durations less than 100 ms, the timing and amplitude of the firing and membrane potentials showed several non-linear effects. The ON response became truncated, the OFF response progressively reduced, and the timing of the OFF responses progressively delayed the shorter the stimulus duration. The offset of the stimulus elicited a sudden and strong negativity in the time derivative of the dye signal. All these non-linearities could be explained by the stimulus offset inducing a sudden inhibition in layers II–III as indicated by the strongly negative time derivative of the dye signal. Despite the non-linear behavior of the layer II–III neurons the sum of the action potentials, integrated from the peak of the ON response to the peak of the OFF response, was almost linearly related to the stimulus duration

    The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids

    Get PDF
    ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pK(a) of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids

    Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis.

    Get PDF
    Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Auditory information enhances post-sensory visual evidence during rapid multisensory decision-making

    Get PDF
    Despite recent progress in understanding multisensory decision-making, a conclusive mechanistic account of how the brain translates the relevant evidence into a decision is lacking. Specifically, it remains unclear whether perceptual improvements during rapid multisensory decisions are best explained by sensory (i.e., ‘Early’) processing benefits or post-sensory (i.e., ‘Late’) changes in decision dynamics. Here, we employ a well-established visual object categorisation task in which early sensory and post-sensory decision evidence can be dissociated using multivariate pattern analysis of the electroencephalogram (EEG). We capitalize on these distinct neural components to identify when and how complementary auditory information influences the encoding of decision-relevant visual evidence in a multisensory context. We show that it is primarily the post-sensory, rather than the early sensory, EEG component amplitudes that are being amplified during rapid audiovisual decision-making. Using a neurally informed drift diffusion model we demonstrate that a multisensory behavioral improvement in accuracy arises from an enhanced quality of the relevant decision evidence, as captured by the post-sensory EEG component, consistent with the emergence of multisensory evidence in higher-order brain areas

    High Tech im OP-Saal - Möglichkeiten und Schwierigkeiten

    No full text

    Prävertebrales Hämatom unter Antikoagulation nach Stellatumblockade

    No full text
    Einleitung: Das Ganglion stellatum ist ein Nervenknoten des Vegetativen Nervensystems. Es handelt sich um die Verschmelzung zweier Ganglien des Grenzstrangs des Sympathikus. Eine Stellatumblockade ist die gezielte lokale Leitungsanästhesie des Ganglion stellatum. Durch diese Blockade kommt es zu einer Vasodilatation im gesamten Einzugsgebiet, zu einer verminderten Schweißsekretion und einem Horner-Syndrom. Fallbeispiel: Wir berichten über eine 82-jährige Patientin, die aufgrund progredienter Schluckbeschwerden und einer kloßigen Sprache notfallmäßig vorstellig wurde. Am Vortag hatte Sie auswärts eine Injektion zervikal zur Behandlung einer Trigeminusneuralgie erhalten. Die Patientin war wegen Herzrhythmusstörungen antikoaguliert. Im HNO-ärztlichen Untersuchungsbefund zeigte sich lediglich eine teils livide Vorwölbung des Pharynx. Zervikal konnte v.a. rechts paralaryngeal bis supraklavikulär eine weiche Raumforderung palpiert werden. Sonografisch und radiologisch zeigte sich schließlich ein ausgedehntes Hämatom prävertebral (12x5,5x4 cm von HWK 3 bis BWK 4 reichend). Bei den klinischen, sonografischen und radiologischen Verlaufskontrollen ergab sich ein kontinuierlich regredienter Befund. Schlussfolgerung: Die Durchführung einer Stellatumblockade kann bei einer Vielzahl von Erkrankungen angewendet werden. Aufgrund von möglicher schwerwiegender Komplikationen ist jedoch auch bei diesem Verfahren auf eine strenge Indikationsstellung sowie eine sorgfältige Patientenselektion zu achten. Bei Patienten mit Antikoagulation sollte besonders darauf geachtet werden, dass die Gerinnung optimal eingestellt ist. Zudem ist eine engmaschige Patientenanbindung nach erfolgter Intervention wichtig, um auf mögliche Komplikationen zeitnah reagieren zu können.Der Erstautor gibt keinen Interessenkonflikt an
    corecore