13 research outputs found
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr × Holstein F2 population
Now a days, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr × Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
On the use of linear regression and maximum likelihood for QTL mapping in half-sib designs
Methods of identification of quantitative trait loci (QTL) using a half-sib design are generally based on least-squares or maximum likelihood approaches. These methods differ in the genetical model considered and in the information used. Despite these differences, the power of the two methods in a daughter design is very similar. Using an analogy with a one-way analysis of variance, we propose an equation connecting the two test-statistics (F ratio for regression and likelihood ratio test in the case of the maximum likelihood). The robustness of this relationship is tested by simulation for different single QTL models. In general, the correspondence between the two statistics is good under both the null hypothesis and the alternative hypothesis of a single QTL segregating. Practical implications are discussed with particular emphasis on the theoretical distribution of the likelihood ratio test
Vitamin E status and the dynamics of its transfer between mother and pup during lactation in grey seals (Halichoerus grypus)
Concentrations of vitamin E, a powerful antioxidant, were measured in milk and serum of 18 grey seal (Halichoerus grypus) mothers and in the serum of their pups sampled up to 6 times between parturition and weaning on the Isle of May, Scotland, in 1998 and 2000. The vitamin E concentration in colostrum (89.4 +/- 22.5 mg/kg milk; mean +/- SD) was 4.5 times greater than that in later milk (20.9 +/- 5.0 mg/kg milk). It then remained constant until the end of lactation. The decline in concentration of vitamin E in grey seal milk corresponded to a drop in the vitamin E concentration in mothers' serum between parturition (14.0 +/- 4.8 mg/L serum) and the second half of the lactation period during which the serum vitamin E concentration remained stable (9.6 +/- 3.2 mg/L serum). Circulating vitamin E concentrations varied significantly among mothers but there was no relationship with mother's age. Despite these differences between mothers, individuals produced milk with very similar vitamin E concentrations. The vitamin E concentration in grey seal pups' serum was low at birth (lowest concentration 3.1 mg/L serum) but increased sharply to a peak around days 1-3 (31.2 +/- 5.2 mg/L serum). It then fell, before stabilizing until the end of lactation (21.1 +/- 4.5 mg/L serum), reflecting the changes reported in the milk.</p