3 research outputs found

    A search for pair-produced resonances in four-jet final states at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb−1 − 1 of √ s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, ̃ t ~ , which decays promptly into two quarks through R-parity-violating couplings. Top squarks with masses in the range 100 GeV<̃<410 100 GeV < m t ~ < 410 GeV GeV are excluded at 95% confidence level. If the decay is into a b-quark and a light quark, a dedicated selection requiring two b-tags is used to exclude masses in the ranges 100 GeV<̃<470 100 GeV < m t ~ < 470 GeV GeV and 480 GeV<̃<610 480 GeV < m t ~ < 610 GeV GeV . Additional limits are set on the pair-production of massive colour-octet resonances

    Search for WH production with a light Higgs boson decaying to prompt electron-jets in proton-proton collisions at s\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A search is performed for WH production with a light Higgs boson decaying to hidden-sector particles resulting in clusters of collimated electrons, known as electron-jets. The search is performed with 2.04 fb-1 of data collected in 2011 with the ATLAS detector at the LHC in proton-proton collisions at s\sqrt{s}=7 TeV. One event satisfying the signal selection criteria is observed, which is consistent with the expected background rate. Limits on the product of the WH production cross section and the branching ratio of a Higgs boson decaying to prompt electron-jets are calculated as a function of a Higgs boson mass in the range from 100 GeV to 140 GeV.Peer Reviewe

    Erratum to: Search for production of WW/WZ resonances decaying to a lepton, neutrino and jets in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, pg 209, 2015)

    No full text
    corecore