81 research outputs found

    The Deconfinement Phase Transition in One-Flavour QCD

    Full text link
    We present a study of the deconfinement phase transition of one-flavour QCD, using the multiboson algorithm. The mass of the Wilson fermions relevant for this study is moderately large and the non-hermitian multiboson method is a superior simulation algorithm. Finite size scaling is studied on lattices of size 83×48^3\times 4, 123×412^3\times 4 and 163×416^3\times 4. The behaviours of the peak of the Polyakov loop susceptibility, the deconfinement ratio and the distribution of the norm of the Polyakov loop are all characteristic of a first-order phase transition for heavy quarks. As the quark mass decreases, the first-order transition gets weaker and turns into a crossover. To investigate finite size scaling on larger spatial lattices we use an effective action in the same universality class as QCD. This effective action is constructed by replacing the fermionic determinant with the Polyakov loop identified as the most relevant Z(3) symmetry breaking term. Higher-order effects are incorporated in an effective Z(3)-breaking field, hh, which couples to the Polyakov loop. Finite size scaling determines the value of hh where the first order transition ends. Our analysis at the end - point, heph_{ep}, indicates that the effective model and thus QCD is consistent with the universality class of the three dimensional Ising model. Matching the field strength at the end point, heph_{ep}, to the κ\kappa values used in the dynamical quark simulations we estimate the end point, κep\kappa_{ep}, of the first-order phase transition. We find κep0.08\kappa_{ep}\sim 0.08 which corresponds to a quark mass of about 1.4 GeV .Comment: LaTex, 25 pages, 18 figure

    Natural history of progression of HPV infection to cervical lesion or clearance: analysis of the control arm of the large, randomised PATRICIA study

    Get PDF
    Background: The control arm of PATRICIA (PApillomaTRIal against Cancer In young Adults, NCT00122681) was used to investigate the risk of progression from cervical HPV infection to cervical intraepithelial neoplasia (CIN) or clearance of infection, and associated determinants. Methods and Findings: Women aged 15-25 years were enrolled. A 6-month persistent HPV infection (6MPI) was defined as detection of the same HPV type at two consecutive evaluations over 6 months and clearance as ≥2 type-specific HPV negative samples taken at two consecutive intervals of approximately 6 months following a positive sample. The primary endpoint was CIN grade 2 or greater (CIN2+) associated with the same HPV type as a 6MPI. Secondary endpoints were CIN1+/CIN3+ associated with the same HPV type as a 6MPI; CIN1+/CIN2+/CIN3+ associated with an infection of any duration; and clearance of infection. The analyses included 4825 women with 16,785 infections (3363 womenwith 6902 6MPIs). Risk of developing a CIN1+/CIN2+/CIN3+ associated with same HPV type as a 6MPI varied with HPV type and was significantly higher for oncogenic versus non-oncogenic types. Hazard ratios for development of CIN2+ were 10.44 (95% CI: 6.96-15.65), 9.65 (5.97-15.60), 5.68 (3.50-9.21), 5.38 (2.87-10.06) and 3.87 (2.38-6.30) for HPV-16, HPV-33, HPV-31, HPV-45 and HPV-18, respectively. HPV-16 or HPV-33 6MPIs had ~25-fold higher risk for progression to CIN3+. Previous or concomitant HPV infection or CIN1+ associated with a different HPV type increased risk. Of the different oncogenic HPV types, HPV-16 and HPV-31 infections were least likely to clear. Conclusions: Cervical infections with oncogenic HPV types increased the risk of CIN2+ and CIN3+. Previous or concomitant infection or CIN1+ also increased the risk. HPV-16 and HPV-33 have by far the highest risk of progression to CIN3+, and HPV-16 and HPV-31 have the lowest chance of clearance

    Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis

    Get PDF
    Abstract Background In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.</p

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore