1,121 research outputs found

    Genetic Variations Mir-10Aa\u3eT, Mir-30Ca\u3eG, Mir-181At\u3eC, and Mir-499Ba\u3eG and the Risk of Recurrent Pregnancy Loss in Korean Women

    Get PDF
    This study investigated the genetic association between recurrent pregnancy loss (RPL) and microRNA (miRNA) polymorphisms in miR-10aA\u3eT, miR-30cA\u3eG, miR-181aT\u3eC, and miR-499bA\u3eG in Korean women. Blood samples were collected from 381 RPL patients and 281 control participants, and genotyping of miR-10aA\u3eT, miR-30cA\u3eG, miR-181aT\u3eC, and miR-499bA\u3eG was carried out by TaqMan miRNA RT-Real Time polymerase chain reaction (PCR). Four polymorphisms were identified, including miR-10aA\u3eT, miR-30cA\u3eG, miR-181aT\u3eC, and miR-499bA\u3eG. MiR-10a dominant model (AA vs. AT + TT) and miR-499bGG genotypes were associated with increased RPL risk (adjusted odds ratio [AOR] = 1.520, 95% confidence interval [CI] = 1.038−2.227, p = 0.032; AOR = 2.956, 95% CI = 1.168−7.482, p = 0.022, respectively). Additionally, both miR-499 dominant (AA vs. AG + GG) and recessive (AA + AG vs. GG) models were significantly associated with increased RPL risk (AOR = 1.465, 95% CI = 1.062−2.020, p = 0.020; AOR = 2.677, 95% CI = 1.066−6.725, p = 0.036, respectively). We further propose that miR-10aA\u3eT, miR-30cA\u3eG, and miR-499bA\u3eG polymorphisms effects could contribute to RPL and should be considered during RPL patient evaluation

    Electrooxidation of glucose by binder-free bimetallic Pd1Ptx/graphene aerogel/nickel foam composite electrodes with low metal loading in basic medium

    Get PDF
    Many 2D graphene-based catalysts for electrooxidation of glucose involved the use of binders and toxic reducing agents in the preparation of the electrodes, which potentially causes the masking of original activity of the electrocatalysts. In this study, a green method was developed to prepare binder-free 3D graphene aerogel/nickel foam electrodes in which bimetallic Pd-Pt NP alloy with different at% ratios were loaded on 3D graphene aerogel. The influence of Pd/Pt ratio (at%: 1:2.9, 1:1.31, 1:1.03), glucose concentration (30 mM, 75 mM, 300 mM, 500 mM) and NaOH concentration (0.1 M, 1 M) on electrooxidation of glucose were investigated. The catalytic activity of the electrodes was enhanced with increasing the Pd/Pt ratio from 1:2.9 to 1:1.03, and changing the NaOH/glucose concentration from 75 mM glucose/0.1 M NaOH to 300 mM glucose/1 M NaOH. The Pd1Pt1.03/GA/NF electrode achieved a high current density of 388.59 A g−1 under the 300 mM glucose/1 M NaOH condition. The stability of the electrodes was also evaluated over 1000 cycles. This study demonstrated that the Pd1Pt1.03/GA/NF electrode could be used as an anodic electrode in glucose-based fuel cells

    Comparative genomics reveals insights into avian genome evolution and adaptation

    Get PDF
    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits

    Laboratory information management system for COVID-19 non-clinical efficacy trial data

    Get PDF
    Background : As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. Results : In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. Conclusions : This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.This research was supported by the National research foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020M3A9I2109027 and 2021M3H9A1030260)

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place

    Observation of the J/ψJ/\psi and ψ(3686)\psi(3686) decays into ηΣ+Σˉ\eta\Sigma^{+}\bar{\Sigma}^{-}

    Full text link
    The decays J/ψηΣ+ΣˉJ/\psi\to\eta\Sigma^{+}\bar{\Sigma}{}^- and ψ(3686)ηΣ+Σˉ\psi(3686)\to\eta\Sigma^{+}\bar{\Sigma}{}^- are observed for the first time, using (10087±44)×106(10087 \pm 44)\times 10^{6} J/ψJ/\psi and (448.1±2.9)×106(448.1 \pm 2.9)\times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. We determine the branching fractions of these two decays to be B(J/ψηΣ+Σˉ)=(6.34±0.21±0.37)×105{\cal B}(J/\psi\to\eta\Sigma^{+}\bar{\Sigma}{}^-)=(6.34 \pm 0.21 \pm 0.37)\times 10^{-5} and B(ψ(3686)ηΣ+Σˉ)=(9.59±2.37±0.61)×106{\cal B}(\psi(3686)\to\eta\Sigma^{+}\bar{\Sigma}{}^-)=(9.59 \pm 2.37 \pm 0.61)\times 10^{-6}, where the first uncertainties are statistical and the second are systematic. The ratio of these two branching fractions is determined to be B(ψ(3686)ηΣ+Σˉ)B(J/ψηΣ+Σˉ)=(15.1±3.8)%\frac{{\cal B}(\psi(3686)\to\eta\Sigma^{+}\bar{\Sigma}{}^-)}{{\cal B}(J/\psi\to\eta\Sigma^{+}\bar{\Sigma}{}^-)}=(15.1 \pm 3.8)\%, which is in agreement with the "12\% rule."Comment: 9 pages and 10 figure
    corecore