605 research outputs found

    Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil

    Get PDF
    The microbial community in the plant rhizosphere is vital to plant productivity and disease resistance. Alterations in the composition and diversity of species within this community could be detrimental if microbes suppressing the activity of pathogens are removed. Species of the insect-pathogenic fungus, Metarhizium, commonly employed as biological control agents against crop pests, have recently been identified as plant root colonizers and provide a variety of benefits (e.g. growth promotion, drought resistance, nitrogen acquisition). However, the impact of Metarhizium amendment on the rhizosphere microbiome has yet to be elucidated. Using Illumina sequencing, we examined the community profiles (bacteria and fungi) of common bean (Phaseolus vulgaris) rhizosphere (loose soil and plant root) after amendment with M. robertsii conidia, in the presence and absence of an insect host. Although alpha diversity was not significantly affected overall, there were numerous examples of plant growth-promoting organisms that significantly increased with Metarhizium amendment (Bradyrhizobium, Flavobacterium, Chaetomium, Trichoderma). Specifically, the abundance of Bradyrhizobium, a group of nitrogen-fixing bacteria, was confirmed to be increased using a qPCR assay with genus-specific primers. In addition, the ability of the microbiome to suppress the activity of a known bean root pathogen was assessed. The development of disease symptoms after application with Fusarium solani f. sp. phaseoli was visible in the hypocotyl and upper root of plants grown in sterilized soil but was suppressed during growth in microbiome soil and soil treated with M. robertsii. Successful amendment of agricultural soils with biocontrol agents such as Metarhizium necessitates a comprehensive understanding of the effects on the diversity of the rhizosphere microbiome. Such research is fundamentally important towards sustainable agricultural practices to improve overall plant health and productivity.Brock University Library Open Access Publishing Fun

    New insights into Dehalococcoides mccartyi metabolism from a reconstructed metabolic network-based systems-level analysis of D. mccartyi transcriptomes

    Get PDF
    Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi. Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic data for a pure isolate (Dehalococcoides mccartyi strain 195) and a mixed microbial consortium (KB-1) using the previously developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A composite genome of two highly similar D. mccartyi strains (KB-1 Dhc) from the KB-1 metagenome sequence was constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for KB-1 Dhc) of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism’s metabolic reconstruction in analyzing various ‘‘omics’’ data to obtain improved understanding of the metabolism and physiology of the organism

    Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours

    Get PDF
    Many characterized metabolic enzymes currently lack associated gene and protein sequences. Here, pathway and genomic neighbour data are used to assign genes to these ‘orphan enzymes,' and the predictions are validated with experimental assays and genome-scale metabolic modelling

    SlowMo, a digital therapy targeting reasoning in paranoia, versus treatment as usual in the treatment of people who fear harm from others: study protocol for a randomised controlled trial

    Get PDF
    Background: Paranoia is one of the most common symptoms of schizophrenia-spectrum disorders, and is associated with significant distress and disruption to the person’s life. Developing more effective and accessible psychological interventions for paranoia is a clinical priority. Our research team has approached this challenge in two main ways: firstly, by adopting an interventionist causal approach to increase effectiveness and secondly, by incorporating user-centred inclusive design methods to enhance accessibility and usability. Our resultant new digital intervention, SlowMo, intensively targets a reasoning style associated with paranoia, fast thinking, characterised by jumping to conclusions and belief inflexibility. It consists of an easy-to-use, enjoyable and memorable digital interface. An interactive web-based app facilitates delivery of face-to-face meetings which is then synchronised with an innovative mobile app for use in daily life. Methods/Design: We aim to test the clinical efficacy of SlowMo over 24 weeks to determine the mechanisms through which it reduces paranoia, and to identify participant characteristics that moderate its effectiveness. In a parallel-group randomised controlled trial, with 1:1 allocation, 360 participants with distressing persecutory beliefs will be independently randomised to receive either the SlowMo intervention added to treatment as usual (TAU) or TAU, using randomly varying permuted blocks, stratified by paranoia severity and site. Research workers will be blind to therapy allocation. The primary outcome is paranoia severity over 24 weeks; our hypothesised mechanism of change is reasoning; moderators include negative symptoms and working memory; and secondary outcomes include wellbeing, quality of life, and service use. The accessibility, usability and acceptability of the digital platform will be assessed. Discussion: SlowMo has been developed as the first blended digital therapy to target fears of harm from others through an inclusive design approach. In addition to testing its efficacy, this trial will add to our understanding of psychological mechanisms in paranoia. The study will examine the usability and adherence of a novel digital therapy, including an app for self-management, in a large sample of people affected by severe mental health difficulties

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +cÂŻÂŻ)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−sÂŻÂŻÂŻ quark asymmetry

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `ÎœÎœÂŻ with ` = e, ”) and hadronic (τ → hadrons Îœ) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of ” = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • 

    corecore