44 research outputs found

    When is negativity not a problem for the ultra-discrete limit?

    Full text link
    The `ultra-discrete limit' has provided a link between integrable difference equations and cellular automata displaying soliton like solutions. In particular, this procedure generally turns strictly positive solutions of algebraic difference equations with positive coefficients into corresponding solutions to equations involving the "Max" operator. Although it certainly is the case that dropping these positivity conditions creates potential difficulties, it is still possible for solutions to persist under the ultra-discrete limit even in their absence. To recognize when this will occur, one must consider whether a certain expression, involving a measure of the rates of convergence of different terms in the difference equation and their coefficients, is equal to zero. Applications discussed include the solution of elementary ordinary difference equations, a discretization of the Hirota Bilinear Difference Equation and the identification of integrals of motion for ultra-discrete equations

    Solitons and Almost-Intertwining Matrices

    Full text link
    We define the set of almost-intertwining matrices to be all triples(X,Y,Z) of n x n matrices for which XZ=YX+T for some rank one matrix T. A surprisingly simple formula is given for tau-functions of the KP hierarchy in terms of such triples. The tau-functions produced in this way include the soliton and vanishing rational solutions. The induced dynamics of the eigenvalues of the matrix X are considered, leading in special cases to the Ruijsenaars-Schneider particle system

    Spectral Difference Equations Satisfied by KP Soliton Wavefunctions

    Full text link
    The Baker-Akhiezer (wave) functions corresponding to soliton solutions of the KP hierarchy are shown to satisfy eigenvalue equations for a commutative ring of translational operators in the spectral parameter. In the rational limit, these translational operators converge to the differential operators in the spectral parameter previously discussed as part of the theory of "bispectrality". Consequently, these translational operators can be seen as demonstrating a form of bispectrality for the non-rational solitons as well.Comment: to appear in "Inverse Problems

    Spin Calogero Particles and Bispectral Solutions of the Matrix KP Hierarchy

    Full text link
    Pairs of n×nn\times n matrices whose commutator differ from the identity by a matrix of rank rr are used to construct bispectral differential operators with r×rr\times r matrix coefficients satisfying the Lax equations of the Matrix KP hierarchy. Moreover, the bispectral involution on these operators has dynamical significance for the spin Calogero particles system whose phase space such pairs represent. In the case r=1r=1, this reproduces well-known results of Wilson and others from the 1990's relating (spinless) Calogero-Moser systems to the bispectrality of (scalar) differential operators. This new class of pairs (L,Λ)(L, \Lambda) of bispectral matrix differential operators is different than those previously studied in that LL acts from the left, but Λ\Lambda from the right on a common r×rr\times r eigenmatrix.Comment: 16 page

    Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

    Full text link
    A new construction using finite dimensional dual grassmannians is developed to study rational and soliton solutions of the KP hierarchy. In the rational case, properties of the tau function which are equivalent to bispectrality of the associated wave function are identified. In particular, it is shown that there exists a bound on the degree of all time variables in tau if and only if the wave function is rank one and bispectral. The action of the bispectral involution, beta, in the generic rational case is determined explicitly in terms of dual grassmannian parameters. Using the correspondence between rational solutions and particle systems, it is demonstrated that beta is a linearizing map of the Calogero-Moser particle system and is essentially the map sigma introduced by Airault, McKean and Moser in 1977.Comment: LaTeX, 24 page

    Association of daily step count and serum testosterone among men in the United States

    Get PDF
    Purpose To describe the association between daily activity (i.e., daily step counts and accelerometer intensity measures) and serum TT levels in a representative sample of US adults aged 18 years or older. Methods A retrospective cohort study was carried out utilizing the NHANES (National Health and Nutrition Examination Survey) 2003–2004 cycle. Physical activity was measured with a waist-worn uniaxial accelerometer (AM-7164; ActiGraph) for up to 7 days using a standardized protocol. Using linear and multivariable logistic regression controlling for relevant social, demographic, lifestyle, and comorbidity characteristics, we assessed the association between daily step counts and TT. Results A total of 279 subjects with a median age 46 (IQR: 33–56) were included in the analysis. 23.3% of the cohort had a low serum TT level (TT < 350 ng/dl). Compared to men who took <4000 steps per day, men who took >4000 or >8000 steps/day had a lower odd of being hypogonadal (OR 0.14, 95% CI: 0.07–0.49 and 0.08, 95%CI: 0.02–0.44, respectively). While a threshold effect was noted on average, TT increased 7 ng/dL for each additional 1000 steps taken daily (β-estimate: 0.007, 95% CI: 0.002–0.013). Conclusions Patients with the lowest daily step counts had higher odds of being hypogonadal. The current work supports a possible association between daily steps, total testosterone, and hypogonadism for men in the US

    Impact of uni- or multifocal perineural invasion in prostate cancer at radical prostatectomy

    Get PDF
    Background: Aim of this study was to correlate perineural invasion (PNI) with other clinical-pathological parameters in terms of prognostic indicators in prostate cancer (PC) cases at the time of radical prostatectomy (RP). Methods: Prospective study of 288 consecutive PC cases undergoing RP. PNI determination was performed either in biopsy or in RP specimens classifying as uni- and multifocal PNI. The median follow-up time was 22 (range, 6-36) months. Results: At biopsy PNI was found in 34 (11.8%) cases and in 202 (70.1%) cases at the time of surgery. Among those identified at RP 133 (46.1%) and 69 (23.9%) cases had uni- and multi-PNI, respectively. Presence of PNI was significantly (P<0.05) correlated with unfavorable pathological parameters such higher stage and grade. The percentage of extracapsular extension in PNI negative RP specimens was 18.6% vs. 60.4% of PNI positive specimens. However, the distribution of pathological staging and International Society of Urological Pathology (ISUP) grading did not vary according to whether PNI was uni- or multifocal. The risk of biochemical progression increased 2.3 times in PNI positive cases was significantly associated with the risk of biochemical progression (r=0.136; P=0.04). However, at multivariate analysis PNI was not significantly associated with biochemical progression [hazard ratio (HR): 1.87, 95% confidence interval (CI): 0.68-3.12; P=0.089]. Within patients with intermediate risk disease, multifocal PNI was able to predict cases with lower mean time to biochemical and progression free survival (chi-square 5.95; P=0.04). Conclusions: PNI at biopsy is not a good predictor of the PNI incidence at the time of RP. PNI detection in surgical specimens may help stratify intermediate risk cases for the risk of biochemical progression

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2)
    corecore