A new construction using finite dimensional dual grassmannians is developed
to study rational and soliton solutions of the KP hierarchy. In the rational
case, properties of the tau function which are equivalent to bispectrality of
the associated wave function are identified. In particular, it is shown that
there exists a bound on the degree of all time variables in tau if and only if
the wave function is rank one and bispectral. The action of the bispectral
involution, beta, in the generic rational case is determined explicitly in
terms of dual grassmannian parameters. Using the correspondence between
rational solutions and particle systems, it is demonstrated that beta is a
linearizing map of the Calogero-Moser particle system and is essentially the
map sigma introduced by Airault, McKean and Moser in 1977.Comment: LaTeX, 24 page