453 research outputs found
Cross sections for Coulomb and nuclear breakup of three-body halo nuclei
All possible dissociation cross sections for the loosely bound three-body
halo nuclei He (n+n+) and Li (n+n+Li) are computed as
functions of target and beam energy. Both Coulomb and nuclear interactions are
included in the same theoretical framework. The measurements agree with the
calculations for energies above 100 Mev/nucleon. The largest cross sections
correspond to final states with zero or three particles for heavy and with two
neutrons for light targets.Comment: 5 pages, 3 figures, revte
Momentum distributions and reaction mechanisms for breakup of two--neutron halos
A theoretical model able to describe fragmentation reactions of three--body
halo nuclei on different targets, from light to heavy, is used to compute
neutron and core momentum distributions. Both Coulomb and nuclear interactions
are simultaneously included. We specify the different reaction mechanisms
related to various processes. The method is applied to fragmentation of He
and Li on C and Pb. We find good agreement with the available
experimental results.Comment: 10 pages, 3 figures, Phys.Lett.B in pres
Neutron-H potentials and the H-properties
The continuum resonance spectrum of H (H++) is investigated by
use of the complex scaled hyperspherical adiabatic expansion method. The
crucial H-neutron potential is obtained by switching off the Coulomb part
from successful fits to He-proton experimental data. These two-body
potentials must be expressed exclusively by operators conserving the
nucleon-core mean field angular momentum quantum numbers. The energies
and widths of the ground-state resonance and the lowest two
excited and -resonances are found to be MeV,
MeV and MeV, respectively. These results agree with
most of the experimental data. The energy distributions of the fragments after
decay of the resonances are predicted.Comment: 26 pages, 8 tables, 7 figures. Accepted for publication in Nucl.
Phys.
Dipole excited states in Li with complex scaling
The 1 excitations of the three--body halo nucleus Li are
investigated. We use adiabatic hyperspherical expansion and solve the Faddeev
equations in coordinate space. The method of complex scaling is used to compute
the resonance states. The Pauli forbidden states occupied by core neutrons are
excluded by constructing corresponding complex scaled phase equivalent two-body
potentials. We use a recently derived neutron--core interaction consistent with
known structure and reaction properties of Li and Li. The
computed dipole excited states with , , and
have energies ranging from 0.6 MeV to 1.0 MeV and widths between
0.15 MeV and 0.65 MeV. We investigate the dependence of the complex energies of
these states on the Li spectrum. The finite spin 3/2 of the core and the
resulting core-neutron spin-spin interaction are important. The connection with
Coulomb dissociation experiments is discussed and a need for better
measurements is pointed out.Comment: 28 pages, 6 figures, Nuclear Physics A, in pres
Breakup Reactions of 11Li within a Three-Body Model
We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li)
on a light target. The interaction parameters are constrained by known
properties of the two-body subsystems, the 11Li binding energy and
fragmentation data. The remaining degrees of freedom are discussed. The
projectile-target interactions are described by phenomenological optical
potentials. The model predicts dependence on beam energy and target,
differences between longitudinal and transverse momentum distributions and
provides absolute values for all computed differential cross sections. We give
an almost complete series of observables and compare with corresponding
measurements. Remarkably good agreement is obtained. The relative neutron-9Li
p-wave content is about 40%. A p-resonance, consistent with measurements at
about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the
momentum distributions are insensitive to target and beam energy with a
tendency to increase towards lower energies. The transverse momentum
distributions are broader than the longitudinal due to the diffraction process.
The absolute values of the cross sections follow the neutron-target cross
sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st
Comprehensive calculations of three--body breakup cross sections
We present in detail a theoretical model for fragmentation reactions of
three--body halo nuclei. The different reaction mechanisms corresponding to the
different processes are described and discussed. Coulomb and nuclear
interactions are simultaneously included and the method is therefore applicable
for any target, light, intermediate and heavy. Absolute values of many
differential cross sections are then available as function of beam energy and
target. We apply the method to fragmentation of He and Li on C, Cu
and Pb. A large variety of observables, cross sections and momentum
distributions, are computed. In almost all cases we obtain good agreement with
the available experimental data.Comment: 41 pages, 10 figures, to be published in Nucl. Phys.
Renormalization of the P- and T-odd nuclear potentials by the strong interaction and enhancement of P-odd effective field
Approximate analytical formulas for the self-consistent renormalization of
P,T-odd and P-odd weak nuclear potentials by the residual nucleon-nucleon
strong interaction are derived. The contact spin-flip nucleon-nucleon
interaction reduces the constant of the P,T-odd potential 1.5 times for the
proton and 1.8 times for the neutron. Renormalization of the P-odd potential is
caused by the velocity dependent spin-flip component of the strong interaction.
In the standard variant of -exchange, the conventional strength
values lead to anomalous enhancement of the P-odd potential. Moreover, the
-meson exchange contribution seems to be large enough to generate an
instability (pole) in the nuclear response to a weak potential.Comment: 5 pages, Revtex3, no figure
Resonances in the three-neutron system
A study of 3-body resonances has been performed in the framework of
configuration space Faddeev equations. The importance of keeping a sufficient
number of terms in the asymptotic expansion of the resonance wave function is
pointed out. We investigated three neutrons interacting in selected force
components taken from realistic nn forces.Comment: 38 pages, 11 tables, 4 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- âŠ