453 research outputs found

    Cross sections for Coulomb and nuclear breakup of three-body halo nuclei

    Get PDF
    All possible dissociation cross sections for the loosely bound three-body halo nuclei 6^6He (n+n+α\alpha) and 11^{11}Li (n+n+9^{9}Li) are computed as functions of target and beam energy. Both Coulomb and nuclear interactions are included in the same theoretical framework. The measurements agree with the calculations for energies above 100 Mev/nucleon. The largest cross sections correspond to final states with zero or three particles for heavy and with two neutrons for light targets.Comment: 5 pages, 3 figures, revte

    Momentum distributions and reaction mechanisms for breakup of two--neutron halos

    Get PDF
    A theoretical model able to describe fragmentation reactions of three--body halo nuclei on different targets, from light to heavy, is used to compute neutron and core momentum distributions. Both Coulomb and nuclear interactions are simultaneously included. We specify the different reaction mechanisms related to various processes. The method is applied to fragmentation of 6^6He and 11^{11}Li on C and Pb. We find good agreement with the available experimental results.Comment: 10 pages, 3 figures, Phys.Lett.B in pres

    Neutron-3^3H potentials and the 5^5H-properties

    Get PDF
    The continuum resonance spectrum of 5^5H (3^3H+nn+nn) is investigated by use of the complex scaled hyperspherical adiabatic expansion method. The crucial 3^3H-neutron potential is obtained by switching off the Coulomb part from successful fits to 3^3He-proton experimental data. These two-body potentials must be expressed exclusively by operators conserving the nucleon-core mean field angular momentum quantum numbers. The energies ERE_R and widths ΓR\Gamma_R of the 1/2+1/2^+ ground-state resonance and the lowest two excited 5/2+5/2^+ and 3/2+3/2^+-resonances are found to be (1.6,1.5)(1.6,1.5) MeV, (2.8,2.5)(2.8,2.5) MeV and (3.2,3.9)(3.2,3.9) MeV, respectively. These results agree with most of the experimental data. The energy distributions of the fragments after decay of the resonances are predicted.Comment: 26 pages, 8 tables, 7 figures. Accepted for publication in Nucl. Phys.

    Dipole excited states in 11^{11}Li with complex scaling

    Full text link
    The 1−^- excitations of the three--body halo nucleus 11^{11}Li are investigated. We use adiabatic hyperspherical expansion and solve the Faddeev equations in coordinate space. The method of complex scaling is used to compute the resonance states. The Pauli forbidden states occupied by core neutrons are excluded by constructing corresponding complex scaled phase equivalent two-body potentials. We use a recently derived neutron--core interaction consistent with known structure and reaction properties of 10^{10}Li and 11^{11}Li. The computed dipole excited states with Jπ=1/2+J^\pi=1/2^+, Jπ=3/2+J^\pi=3/2^+, and Jπ=5/2+J^\pi=5/2^+ have energies ranging from 0.6 MeV to 1.0 MeV and widths between 0.15 MeV and 0.65 MeV. We investigate the dependence of the complex energies of these states on the 10^{10}Li spectrum. The finite spin 3/2 of the core and the resulting core-neutron spin-spin interaction are important. The connection with Coulomb dissociation experiments is discussed and a need for better measurements is pointed out.Comment: 28 pages, 6 figures, Nuclear Physics A, in pres

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st

    Comprehensive calculations of three--body breakup cross sections

    Get PDF
    We present in detail a theoretical model for fragmentation reactions of three--body halo nuclei. The different reaction mechanisms corresponding to the different processes are described and discussed. Coulomb and nuclear interactions are simultaneously included and the method is therefore applicable for any target, light, intermediate and heavy. Absolute values of many differential cross sections are then available as function of beam energy and target. We apply the method to fragmentation of 6^6He and 11^{11}Li on C, Cu and Pb. A large variety of observables, cross sections and momentum distributions, are computed. In almost all cases we obtain good agreement with the available experimental data.Comment: 41 pages, 10 figures, to be published in Nucl. Phys.

    Renormalization of the P- and T-odd nuclear potentials by the strong interaction and enhancement of P-odd effective field

    Get PDF
    Approximate analytical formulas for the self-consistent renormalization of P,T-odd and P-odd weak nuclear potentials by the residual nucleon-nucleon strong interaction are derived. The contact spin-flip nucleon-nucleon interaction reduces the constant of the P,T-odd potential 1.5 times for the proton and 1.8 times for the neutron. Renormalization of the P-odd potential is caused by the velocity dependent spin-flip component of the strong interaction. In the standard variant of π+ρ\pi + \rho-exchange, the conventional strength values lead to anomalous enhancement of the P-odd potential. Moreover, the π\pi-meson exchange contribution seems to be large enough to generate an instability (pole) in the nuclear response to a weak potential.Comment: 5 pages, Revtex3, no figure

    Resonances in the three-neutron system

    Full text link
    A study of 3-body resonances has been performed in the framework of configuration space Faddeev equations. The importance of keeping a sufficient number of terms in the asymptotic expansion of the resonance wave function is pointed out. We investigated three neutrons interacting in selected force components taken from realistic nn forces.Comment: 38 pages, 11 tables, 4 figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore