11 research outputs found

    14-3-3zeta is required for PKA-dependent lipolysis in mature adipocytes

    Full text link
    Une augmentation de l’hypertrophie et l'hyperplasie des adipocytes est au coeur du développement de l'obésité. Nous avons déjà constaté que 14-3-3zeta (14-3-3ζ), une protéine d’échafaudage moléculaire, a plusieurs rôles essentiels dans l'adipogenèse. Cependant, les contributions de 14-3-3ζ dans la fonction des adipocytes matures ne sont pas connues. Les cellules 3T3-L1 et souris dépourvues de 14-3-3ζ dans les adipocytes (adi14-3-3ζKO) ont été utilisés pour examiner le rôle de 14-3-3ζ dans la lipolyse. L’élimination de 14-3-3ζ dans les cellules 3T3-L1 par l’ARNi a réduit significativement la lipolyse stimulée par l'isoprotérénol (un agoniste bêta adrénergique), la forskoline (un activateur de l’adénylate cyclase) et le dibutyryl AMPc (dbcAMP). Les analyses par qPCR ont démontré des réductions significatives d’adipose triglyceride lipase (Atgl) et lipase hormonsensible (Hsl) au niveau transcriptionnel. De plus, une réduction au niveau des substrats de la PKA phosphorylés et totaux tels que HSL et CREB, a été détectée par Western Blot dans les 3T3-L1 appauvris en 14-3-3ζ. Ces résultats in vitro ont été récapitulés in vivo, car des diminutions des taux phosphorylés et totaux de HSL ont été observés dans le tissu adipeux gonadique des souris adi14-3-3ζKO. Les souris adi14-3-3ζKO et les explants gonadiques ont également montré une lipolyse affaiblie après des injections i.p de l’agoniste bêta 3-adrénergique CL-316,243 et un traitement de l’isoprotérénol respectivement. De manière intéressante, une diminution de l’expression de 14-3-3ζ dans les cellules 3T3-L1 et les souris adi14-3-3ζKO a mené à une diminution des caractéristiques des adipocytes matures telles que les niveaux d’ARNm de Pparg, Lpl et Fabp4, les niveaux de PPARγ, le contenu en triglycérides et l'incorporation de Oil Red-O. Collectivement, ces résultats démontrent que 14-3-3ζ joue un rôle essentiel en facilitant la lipolyse et en déterminant la maturité des adipocytes.Altered hypertrophy and hyperplasia of adipocytes lie at the core of the development of obesity. We previously demonstrated that the molecular scaffold 14-3-3zeta (14-3-3ζ) had essential roles in adipogenesis. However, the contributions of 14-3-3ζ to mature adipocyte function are not known. 3T3-L1 cells and tamoxifen-inducible adipocyte-specific 14-3-3ζ knockout mice (adi14-3-3ζKO) models were used to examine the roles of 14-3-3ζ in lipolysis. siRNA-mediated knockdown of 14-3-3ζ impaired lipolysis in 3T3-L1 cells stimulated by the beta-adrenergic agonist isoproterenol (Iso), forskolin (an activator of adenylyl cyclase) and dibutyryl cAMP (dbcAMP). qPCR analyses revealed significant reductions in lipase transcript levels (Atgl and Hsl). Furthermore, reductions in the phosphorylated and total levels of PKA substrates such as HSL and CREB were detected in 14-3-3ζ-depleted 3T3-L1 lysates by immunoblotting. These findings were recapitulated in vivo, as reductions in phosphorylated and total HSL levels were detected in the gonadal adipose tissue of adi14-3-3ζKO mice. adi14-3-3ζKO mice and gonadal explants also displayed impaired lipolysis following i.p CL-316,243 (a beta-3 adrenergic agonist) injections and Iso treatment respectively. Interestingly, decreased 14-3-3ζ expression in 3T3-L1 cells and mice revealed reductions in characteristics of a mature adipocyte, such as Pparg, Lpl, and Fabp4 transcript levels, PPARγ levels, triglyceride content, and Oil Red O (ORO) incorporation. Collectively, these results demonstrate that 14-3-3ζ has essential roles in facilitating lipolysis and determining adipocyte maturity

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Glycerol 3-phosphate phosphatase/PGPH-2 counters metabolic stress and promotes healthy aging via a glycogen sensing-AMPK-HLH-30-autophagy axis in C. elegans

    No full text
    Abstract Metabolic stress caused by excess nutrients accelerates aging. We recently demonstrated that the newly discovered enzyme glycerol-3-phosphate phosphatase (G3PP; gene Pgp), which operates an evolutionarily conserved glycerol shunt that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol, counters metabolic stress and promotes healthy aging in C. elegans. However, the mechanism whereby G3PP activation extends healthspan and lifespan, particularly under glucotoxicity, remained unknown. Here, we show that the overexpression of the C. elegans G3PP homolog, PGPH-2, decreases fat levels and mimics, in part, the beneficial effects of calorie restriction, particularly in glucotoxicity conditions, without reducing food intake. PGPH-2 overexpression depletes glycogen stores activating AMP-activate protein kinase, which leads to the HLH-30 nuclear translocation and activation of autophagy, promoting healthy aging. Transcriptomics reveal an HLH-30-dependent longevity and catabolic gene expression signature with PGPH-2 overexpression. Thus, G3PP overexpression activates three key longevity factors, AMPK, the TFEB homolog HLH-30, and autophagy, and may be an attractive target for age-related metabolic disorders linked to excess nutrients

    System-wide approaches to antimicrobial therapy and antimicrobial resistance in the UK: the AMR-X framework

    No full text
    Antimicrobial resistance (AMR) threatens human, animal, and environmental health. Acknowledging the urgency of addressing AMR, an opportunity exists to extend AMR action-focused research beyond the confines of an isolated biomedical paradigm. An AMR learning system, AMR-X, envisions a national network of health systems creating and applying optimal use of antimicrobials on the basis of their data collected from the delivery of routine clinical care. AMR-X integrates traditional AMR discovery, experimental research, and applied research with continuous analysis of pathogens, antimicrobial uses, and clinical outcomes that are routinely disseminated to practitioners, policy makers, patients, and the public to drive changes in practice and outcomes. AMR-X uses connected data-to-action systems to underpin an evaluation framework embedded in routine care, continuously driving implementation of improvements in patient and population health, targeting investment, and incentivising innovation. All stakeholders co-create AMR-X, protecting the public from AMR by adapting to continuously evolving AMR threats and generating the information needed for precision patient and population care.</p

    Regulation of the pleiotropic effects of tissue-resident mast cells

    No full text

    MAPPING LOCAL PATTERNS OF CHILDHOOD OVERWEIGHT AND WASTING IN LOW- AND MIDDLE-INCOME COUNTRIES BETWEEN 2000 AND 2017

    No full text
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
    corecore