54 research outputs found

    Modification of Unit Discharges in the Medial Geniculate Nucleus by Click-Shock Pairing

    Get PDF
    The present experiment was concerned with some discharge properties of single neurons in the medial geniculate body of the locally anesthetized paralyzed cat. The effect of pairing clicks with paw shock upon discharge rate and pattern was of particular concern. Twelve neurons obtained from 11 cats were studied exhaustively for periods up to 4 hr. Under control conditions, rate stationarity for both spontaneous and click-evoked activity was found in only 3/12 of the units. Click-shock pairing produced rate changes in lo/12 of the cells; an increase in rate predominated. The pattern of discharges was altered in 9/E of the cells as a consequence of click-shock pairing. Specifically, the initial short-latency discharge was modified; there was a reduction in the proportion of spikes in the first peak to the total number of spikes in the poststimulus time histogram. This reduction was not merely a consequence of increases in over-all rate of discharge. In the case of one cell which was inhibited rather than excited by click stimulation, the click-shock pairing resulted in a reduction in the duration of inhibition. Control findings indicated that the pattern modifications were not due to a change in stimulus intensity, the unconditioned effects of the shock itself, or to an increase in arousal level

    In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice

    Get PDF
    We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    Structural Approaches in the Sociology of Social Movements

    Get PDF

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys

    Cortical synthesis of azimuth-sensitive single-unit responses with nonmonotonic level tuning: A thalamocortical comparison in the cat

    No full text
    1. Azimuth and sound pressure level (SPL) tuning to noise stimulation was characterized in single-unit samples obtained from primary auditory cortex (AI) and in areas of the medial geniculate body (MGB) that project to AI. The primary aim of the study was to test the hypothesis that AI is an important site of synthesis of single-unit responses that exhibit both azimuth sensitivity (tendency for directionally restricted responsiveness) and nonmonotonic (NM) level tuning (tendency for decreased responsiveness with increasing SPL). This was accomplished by comparing the proportions of such responses in AI and MGB. 2. Samples consisted of high-best-frequency (BF) single units located in MGB (n = 217) and AI (n = 216) of barbiturate- anesthetized cats. The MGB sample was obtained mainly from recording sites located in two nuclei that project to AI, the ventral nucleus (VN, n = 118) and the lateral part of the posterior group of thalamic nuclei (Po, n = 84). In addition, a few MGB units were obtained from the medial division (n = 8) or uncertain locations (n = 7). Each unit's responses were studied using noise bursts presented from azimuthal sound directions distributed throughout 180° of the frontal hemifield at 0° elevation. SPL was varied over an 80- dB range in steps of ≤20 dB at each location. Similarities and differences in azimuth and level tuning were evaluated statistically by comparing the AI sample with the entire MGB sample. If they were found to differ, the AI, VN, and Po samples were compared. 3. Azimuth function modulation was used as a measure of azimuth sensitivity, and its mean was greater in AI than in MGB. NM strength was defined as the percentage reduction in level function value at 75 dB SPL and its mean was greater in AI (showing a greater tendency for decreased responsiveness) than in MGB. Azimuth sensitive (AS) NM units were identified by jointly categorizing each sample according to both azimuth sensitivity (sensitive and insensitive categories) and NM strength (NM and monotonic categories). AS NM units were much more common in the AI sample than in any of the MGB samples, suggesting that some such responses are synthesized in AI. 4. A vast majority of AI NM units have been reported to be AS, showing a preferential association (linkage) between these two response properties. This finding was confirmed in AI, but was not found to be the case in MGB. This suggests that a linkage between these response properties emerges in the cortex, presumably as a result of synthesis of NM AS responses. Although the functional significance of the linkage is unknown. NM responses may reflect excitatory/inhibitory antagonism that provides AS AI neurons with sensitivity to stimulus features beyond that which is present in MGB. 5. Breadth of azimuth tuning of AS cells was measured as the portion of the frontal hemifield over which azimuth function values were >75% of maximum (preferred azimuth range, PAR). PARs were broadly distributed in each structure, and mean PAR was narrower in AI than in MGB. A preferred level range (PLR) was defined for NM level functions as the range over which values were >75% of maximum, and mean PLRs were similar in each sample. There was a weak, but significant, positive correlation between PARs and PLRs in AI but not in MGB. This further suggests a linkage between azimuth and level tuning in AI that does not exist in MGB. 6. Best azimuth (midpoint of the PAR) was used to classify cells as contralateral preferring, ipsilateral preferring, midline preferring, or multipeaked. Samples from AI and MGB exhibited similar distributions of these categories. Contralateral-preferring cells represented a majority of each sample, whereass midline-preferring, ipsilateral- preferring, and multipeaked cells each represented smaller proportions. This suggests that the azimuth preference distribution in AI largely reflects that in MGB. 7. A best SPL was defined as the midpoint of the PLR. This was broadly distributed with respect to best azimuths and BFs in both MGB and AI. Mean best SPLs in different structures were similar. Best SPL was positively correlated with PLR size in both AI and MGB, showing that variation in best SPL reflected, at least in part, variation in breadth of level tuning
    corecore