1,103 research outputs found
Residue codes of extremal Type II Z_4-codes and the moonshine vertex operator algebra
In this paper, we study the residue codes of extremal Type II Z_4-codes of
length 24 and their relations to the famous moonshine vertex operator algebra.
The main result is a complete classification of all residue codes of extremal
Type II Z_4-codes of length 24. Some corresponding results associated to the
moonshine vertex operator algebra are also discussed.Comment: 21 pages, shortened from v
Plausible self-reported dietary intakes in a residential facility are not necessarily reliable
Background/Objectives: Comparing reported energy intakes with estimated energy requirements as multiples of basal metabolic rate (Ein:BMR) is an established method of identifying implausible food intake records. The present study aimed to examine the validity of self-reported food intakes believed to be plausible. Subjects/Methods: One hundred and eighty men and women were provided with all food and beverages for two consecutive days in a residential laboratory setting. Subjects self-reported their food and beverage intakes using the weighed food diary method (WDR). Investigators covertly measured subjects’ actual consumption over the same period. Subjects also reported intakes over four consecutive days at home. BMR was measured by indirect calorimetry. Results: Average reported energy intakes were significantly lower than actual intakes (11.2 and 11.8 MJ/d, respectively, P<0.001). Two-thirds (121) of the WDR were under-reported to varying degrees. Only five of these were considered as implausible using an Ein:BMR cut-off value of 1.03*BMR. Under-reporting of food and beverage intakes, as measured by the difference between reported and actual intake, was evident at all levels of Ein;BMR. Reported energy intakes were lower still (10.2 MJ/d) while subjects were at home. Conclusions: Under-recording of self-reported food intake records was extensive but very few under-reported food intake records were identified as implausible using energy intake to BMR ratios. Under-recording was evident at all levels of energy intake
Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias
The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events
Predictability of evolutionary trajectories in fitness landscapes
Experimental studies on enzyme evolution show that only a small fraction of
all possible mutation trajectories are accessible to evolution. However, these
experiments deal with individual enzymes and explore a tiny part of the fitness
landscape. We report an exhaustive analysis of fitness landscapes constructed
with an off-lattice model of protein folding where fitness is equated with
robustness to misfolding. This model mimics the essential features of the
interactions between amino acids, is consistent with the key paradigms of
protein folding and reproduces the universal distribution of evolutionary rates
among orthologous proteins. We introduce mean path divergence as a quantitative
measure of the degree to which the starting and ending points determine the
path of evolution in fitness landscapes. Global measures of landscape roughness
are good predictors of path divergence in all studied landscapes: the mean path
divergence is greater in smooth landscapes than in rough ones. The
model-derived and experimental landscapes are significantly smoother than
random landscapes and resemble additive landscapes perturbed with moderate
amounts of noise; thus, these landscapes are substantially robust to mutation.
The model landscapes show a deficit of suboptimal peaks even compared with
noisy additive landscapes with similar overall roughness. We suggest that
smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein
folding.Comment: 14 pages, 7 figure
Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink
This is the final version. Available on open access from Springer via the DOI in this record. Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic–saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic–saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.Gordon and Betty Moore foundationPhilip Leverhulme AwardDavid and Lucile Packard FoundationCONICYT FONDECYTMBAR
Malaria protection due to sickle haemoglobin depends on parasite genotype
Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations
A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions
Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
Sensitive detection of voltage transients using differential intensity surface plasmon resonance system
This paper describes theoretical and experimental study of the fundamentals of using surface plasmon resonance (SPR) for label-free detection of voltage. Plasmonic voltage sensing relies on the capacitive properties of metal-electrolyte interface that are governed by electrostatic interactions between charge carriers in both phases. Externally-applied voltage leads to changes in the free electron density in the surface of the metal, shifting the SPR position. The study shows the effects of the applied voltage on the shape of the SPR curve. It also provides a comparison between the theoretical and experimental response to the applied voltage. The response is presented in a universal term that can be used to assess the voltage sensitivity of different SPR instruments. Finally, it demonstrates the capacity of the SPR system in resolving dynamic voltage signals; a detection limit of 10mV with a temporal resolution of 5ms is achievable. These findings pave the way for the use of SPR systems in the detection of electrical activity of biological cells
Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
- …