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Introduction 92 

Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people 93 
worldwide, and with increasing incidence in westernized countries.1,2 To elucidate the genetic 94 
architecture and understand disease mechanisms of allergic rhinitis, we carried out a meta-95 
analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and 96 
identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with 97 
allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 98 
controls. Functional annotation implied genes involved in various immune pathways, and fine 99 
mapping of the HLA region suggested amino acid variants of importance for antigen binding. 100 
We further performed GWASs of allergic sensitization against inhalant allergens and non-101 
allergic rhinitis suggesting shared genetic mechanisms across rhinitis-related traits. Future 102 
studies of the identified loci and genes might identify novel targets for treatment and prevention 103 
of allergic rhinitis.   104 
 105 

Main text 106 

Allergic rhinitis (AR) is an inflammatory disorder of the nasal mucosa mediated by 107 
allergic hypersensitivity responses to environmental allergens1 with large adverse effects on 108 
quality of life and health care expenditures. The underlying causes for AR are still not 109 
understood and prevention of the disease is not possible. The heritability of AR is estimated to 110 
be more than 65%3,4. Seven loci have been associated and with allergic rhinitis in genome-wide 111 
association studies (GWAS) of AR per se, while other have been suggested from GWAS 112 
studies on related traits, such as self-reported allergy, asthma plus hay fever, or allergic 113 
sensitization5–9, but only few of these have been replicated. 114 
We carried out a large-scale meta-GWAS of AR including a discovery meta-analysis of 115 
16,531,985 genetic markers from 18 studies comprising 59,762 cases and 152,358 controls of 116 
primarily European ancestry (Supplementary Table 1, cohort recruitment details in 117 
Supplementary Note). We report the genetic heritability on the liability scale of AR as at least 118 
7.8% (assuming 10% disease prevalence), with a genomic inflation of 1.048 (Supplementary 119 
Figure 1). We identified 42 genetic loci, with index markers below genomewide significance 120 
(p<5e-8), of which 21 have previously been reported in relation to AR or other inhalant allergy6–9 121 
(Fig. 1, Table 1, Supplementary Fig. 2, Supplementary Fig. 3).  122 
One study (23andMe) had a proportionally large weight (~80%) in the discovery phase. 123 
Overall  there was good agreement between 23andMe and the other studies with respect to 124 
effect size and direction, and regional association patterns (Supplementary Table 2 and 125 
Supplementary Fig. 4+5), and the genetic correlation was 0.80 (p<2e-17). Heterogeneity 126 
between 23andMe and the remaining studies was statistically significant (p<0.05) for 7 of 42 127 
loci, in most cases due to a smaller effect size in 23andMe. This was likely due to many non-128 
23andMe studies using a more robust phenotype definition of doctor diagnosed AR 129 
(Supplementary Table 3), which tended to result in larger effect sizes (Supplementary Table 130 
4).  131 
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  The index markers from a total of 25 loci that had not previously been associated 132 
with AR or other inhalant allergy were carried forward to the replication phase. These included 133 
16 loci that showed genome-wide significant association in the discovery phase and evidence of 134 
association (p<0.05) in both 23andMe and non-23andMe studies (Supplementary Table 2), 135 
and an additional 9 loci that were selected from the p-value stratum between 5e-8 and 1e-6 136 
based on enrichment of gene sets involved in immune-signalling (Supplementary Table 5). 137 
Replication was sought in another 10 studies with 60,720 cases and 618,527 controls. Of the 25 138 
loci, 20 loci reached a Bonferroni-corrected significance threshold of 0.05 (p<0.0019) in a meta-139 
analysis of replication studies (Fig. 1 (blue), Table 1), and all of these reached genome-wide 140 
significance in the combined fixed-effect meta-analysis of discovery and replication studies 141 
(Table 1). Evidence of heterogeneity was seen for one of these loci (rs1504215), which did not 142 
reach statistical significance in the random effects model (0.95 [0.92; 0.97], p=2.83e-07, 143 
Supplementary Fig. 3).  144 

 A conditional analysis of top loci identified 13 additional independent variants at 145 
p<1e-5, with 4 of these being genome-wide significant (near WDR36, HLA-DQB1, IL1RL1 and 146 
LPP) (Supplementary Table 6 and Supplementary Fig. 5, bottom panel). 147 
To gain insight into functional consequences of known and novel loci, we utilised a number of 148 
data sources, including 1) 11 eQTL sets and 1 meQTL set from blood and blood subsets; 2) 2 149 
eQTL sets and 1 meQTL set from lung tissue; and 3) data on enhancer-promoter interactions in 150 
15 different blood subsets. Support of regulatory effects on coding genes was found for 33 out 151 
of the 41 loci. Many loci showed evidence of regulatory effects across a wide range of immune 152 
cell types (including B- and T-cells), while other seemed cell type-specific, like e.g. innate 153 
lymphoid cells (Table 2 and Supplementary Table 7). Calculation of the “credible set” of 154 
markers for each locus using a Bayesian approach that selects markers likely to contain the 155 
causal disease-associated markers (Supplementary Table 8) and looking up these in the 156 
Variant Effect Predictor database generated a list of 17 markers producing amino acid changes, 157 
including deleterious changes in NUSAP1, SULT1A1 and PLCL, as predicted by SIFT 158 
(Supplementary Table 9). 159 
The major histocompatibility complex on chr6p harbored some of the strongest association 160 
signals in the GWAS with 2 independent signals located around HLA-DQB and HLA-B, 161 
respectively. The top variant at HLA-DQB was an eQTL for several HLA-genes, including HLA-162 
DQB1, HLA-DQA1, HLA-DQA2, and HLA-DRB1 in immune and/or lung tissue, and the top 163 
variant at HLA-B was an eQTL for MICA (Supplementary Table 7). In addition we found highly 164 
significant associations with several well imputed amino acid variants (Supplementary Tables 165 
10 and 11). Importantly, the strongest associated amino acid variants in HLA-DQB1 and HLA-B, 166 
respectively (Supplementary Table 10) were both located in the peptide binding pockets with a 167 
high likelihood of affecting MHC-peptide interaction (Figure 2). MHC class II molecules, 168 
including HLA-DQ, are known for their role in allergen-binding and Th2 driven immune 169 
responses. 10 The strong association with HLA-DQB1 His30 (p=2.06e-28, OR=0.91) in the 170 
peptide binding pocket, and the moderate LD (r2=0.71) with the GWAS top SNP rs3400401, 171 
therefore suggest that the association signal at this locus involves changes in allergen binding 172 
properties by HLA-DQ and thereby altered risk of allergen-specific immunity. We also found 173 
association with several classical HLA alleles, including HLA-DQB1*02:02, HLA-DQB1*03:01, 174 
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HLA-DRB1*04:01, and HLA-C*04:01, which were in weak LD (r2<0.1) with the GWAS top SNPs 175 
(Supplementary Tables 12 and 13). These findings suggest that genetic associations in HLA-176 
MHC region both involve variants affecting gene regulation and structure, similar to what has 177 
been found for autoimmune disease.11,12 178 

The majority of the 20 loci not previously associated with AR per se imply genes with a 179 
known role in the immune system, including IL7R13, 14, SH2B315, CEBPA/CEBPG16, 17, CXCR518, 180 
FCER1G, NFKB119, BACH220, 21, TYRO322, LTK 23, VPRBP24, SPPL325, OASL26, RORA27, and 181 
TNFSF1128. Other loci imply genes with no clear function in AR pathogenesis. These include 182 
one of the strongest associated loci in this meta-analysis at 12q24.31 with the top-signal located 183 
between CDK2AP1 and C12orf65, harboring cis-eQTLs in blood and lung tissue for several 184 
genes and evidence for enhancer-promoter interaction with DDX55 in various immune cells. 185 
(Table 2 and further locus description in the Supplementary Note). Concomitantly with the 186 
current study, a GWAS combining asthma, eczema and AR was conducted.29 The majority 187 
(15/20) of identified AR loci in our study were also suggested in the previous, more unspecific, 188 
GWAS29 (as indicated in Tables 1 and 2), while many suggested loci from the previous GWAS 189 
were not identified in our study. Asthma, eczema and allergic rhinitis are related but distinct 190 
disease entities, often with separate disease mechanisms, e.g. allergic sensitization is present 191 
in only 50% of children with asthma30 and 35% of children with eczema.31 Our results therefore 192 
complement those from the less specific “atopic phenotype” GWAS29 by pinpointing loci 193 
specifically associated, and replicated, in relation to allergic rhinitis.   194 
AR loci were significantly enriched (p<1e-5) for variants reported to be associated with 195 
autoimmune disorders. Reported autoimmune variants were located within a 1mb distance of 31 196 
(76%) of the 41 AR loci. For 24 of these, an autoimmune top SNP was also associated with AR, 197 
and for 12 of these the autoimmune top SNP was in LD (r2>0.5) with the AR top SNP 198 
(Supplementary Table 14). For approximately half of these, the direction of effect was the 199 
same for the autoimmune and AR top SNP in line with a previous study,32 underlining the 200 
complex genetic relationship between AR and autoimmunity, which might involve shared as well 201 
as diverging molecular mechanisms.  202 
Assessment of enrichment of AR-associated variant burden in open chromatin as defined by 203 
DNAse hypersensitive sites showed a clear enrichment in several blood and immune cell 204 
subsets, with the largest enrichment in T-cells (CD3 expressing), B-cells (CD19 expressing), 205 
and T and NK-cells (CD56-expressing) (Fig. 3, Supplementary Table 15, Supplementary Fig. 206 
6). We also probed tissue enrichment by means of gene expression data from a wide number of 207 
sources, showing enrichment of AR genes in blood and immune cell subsets, as well as in 208 
tissues of the respiratory system, including oropharynx, respiratory and nasal mucosa 209 
(Supplementary Table 16).  210 
To explore biological connections and identify new pathways associated with AR, we combined 211 
all genes suggested from eQTL/meQTL analyses, enhancer-promoter interactions and 212 
localization within the top loci. The resultant prioritized gene set consisted of 255 genes, of 213 
which 89 (~36%) were present in more than one set (Supplementary Fig. 7). Overall, the full 214 
set was enriched for pathways involved in Th1 and Th2 Activation (Fig. 4), antigen presentation, 215 
cytokine signaling, and inflammatory responses (Supplementary Table 17).    216 
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Using the 255 prioritized genes in combination with STRING to identify proteins that interact 217 
with the proteins encoded by the high priority genes, we demonstrated a high degree of 218 
interaction at the protein level, and several of these proteins are target of approved drugs or 219 
drugs in development, including TNFSF11, NDUFAF1, PD-L1, IL-5, and IL-13  (Fig. 4).  220 
AR is strongly correlated to allergic sensitization (presence of allergen-specific IgE), but 221 
sensitization is often present without AR suggesting specific mechanisms determining 222 
progression from sensitization to disease. We therefore conducted a GWAS on sensitization to 223 
inhalant allergens (AS) comprising 8,040 cases and 16,441 controls from 13 studies 224 
(Supplementary Table 1), making it the largest GWAS on allergic sensitization to date7. A total 225 
of 10 loci reached genome-wide significance, including one novel hit near the FASLG gene 226 
(Supplementary Table 18). The genetic heritability on the liability scale was 17.75% (10% 227 
prevalence), considerably higher than the heritability of AR in consistency with a more 228 
homogeneous phenotype. Look-up of AR top-loci in the AS GWAS demonstrated large 229 
agreement with 39 of the 41 AR markers showing same direction of effect and 28 also showing 230 
nominal significance for AS (Supplementary Table 19). This suggests that AR and AS share 231 
biological mechanisms and that AS loci generally affect systemic allergic sensitization. We 232 
compared genetic pathways of AR and AS using the DEPICT tool showing overlap in enriched 233 
pathways but also differences among the top gene sets, with AR gene sets characterized by B-234 
cell, Th2, and parasite responses and AS gene sets characterized by a broader activation of 235 
cells (Supplementary Fig 8 and Supplementary Tables 20 and 21).  236 
Non-allergic rhinitis, defined as rhinitis symptoms without evidence of allergic sensitization, is a 237 
common but poorly understood disease entity.33 We performed the first GWAS on this 238 
phenotype hypothesizing that this might reveal specific rhinitis mechanisms. The analysis 239 
included 2,028 cases and 9,606 controls from 9 studies but did not identify any risk loci at the 240 
genome-wide significance level. Comparison with AR results suggested some overlap in 241 
susceptibility loci (Supplementary Note and Supplementary Table 22).  242 
We estimated the proportion of AR in the general population that can be attributed to the 41 243 
identified AR loci and obtained a conservative population-attributable risk fraction estimate of 244 
39% (95% CI 26%-50%), considering the 10% of the population with the lowest genetic risk 245 
scores to represent an ‘unexposed’ group. Allergic rhinitis prevalence plotted by genetic risk 246 
score (Supplementary Fig. 9) showed approximately 2 times higher prevalence in the 7% of 247 
the population with the highest risk score compared to the 7% with the lowest risk score.   248 
Finally, we investigated the genetic correlation of AR with AS, asthma34, and eczema35 by LD 249 
score regression. There was a strong correlation between AR and AS (r2=0.73, p<2e-34), 250 
moderate with asthma (r2=0.60, p<3e-14) and weaker with eczema (r2=0.40, p<2e-07). 251 
In conclusion, we expanded the number of established susceptibility loci for AR and highlighted 252 
involvement of AR susceptibility loci in diverse immune cell types and both innate and adaptive 253 
IgE-related mechanisms. Future studies of novel AR loci might identify targets for treatment and 254 
prevention of disease. 255 

 256 
  257 
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Methods: 258 

Phenotype definition  259 

Allergic rhinitis (AR) 260 
Cases were defined as individuals ever having a diagnosis or symptoms of AR dependant on 261 
available phenotype definitions in the included studies (Supplementary Table 3 and cohort 262 
recruitment details in Supplementary Note). To maximize numbers and optimize statistical 263 
power, we did not require doctor-diagnosed AR or verification by allergic sensitization. This 264 
approach was confirmed by a sensitivity analysis in 23andMe based on association with known 265 
risk loci for allergic rhinitis (data not shown). Controls were defined as individuals who never had 266 
a diagnosis or symptoms of AR.  267 
 268 
Allergic sensitization (AS) 269 
We considered specific IgE production against inhalant allergens without restriction by 270 
assessment method or type of inhalant allergen. Cases were defined as individuals with 271 
objectively measured sensitization against at least one of the inhalant allergens tested for in the 272 
respective studies, and controls were defined as individuals who were not sensitized against 273 
any of the allergens tested for. We included sensitization assessed by skin reaction after 274 
puncture of the skin with a droplet of allergen extract (SPT) and/or by detection of the levels of 275 
circulating allergen-specific IgE in the blood. The SPT wheal diameter cutoffs were 3 mm larger 276 
than the negative control for cases and smaller than 1 mm for controls. To optimize case 277 
specificity and the correlation between methods, we chose a high cutoff of specific IgE levels for 278 
cases (0.7 IU/ml) and a low cutoff for controls (0.35 IU/ml).  279 
 280 
Non-allergic rhinitis (NAR) 281 
Case were defined as individuals with current allergic rhinitis symptoms (within the last 12 282 
months) and no allergic sensitization (negative specific IgE (< 0.35 IU/mL) and/or negative skin 283 
prick test (< 1 mm) for all allergens and time points tested) 284 
Controls were defined as individuals never having symptoms of allergic rhinitis and no allergic 285 
sensitization (negative specific IgE (< 0.35 IU/mL) and/or negative skin prick test (< 1 mm) for all 286 
allergens and time points tested) 287 
 288 
For all 3 phenotypes, we combined data from children and adults but chose a lower age limit of 289 
6 years, as allergic rhinitis and sensitization status at younger ages show poorer correlation with 290 
status later in life, both owing to transient symptoms/sensitization status and frequent 291 
development of symptoms/sensitization during late childhood. 292 

GWAS QC and cohort summary data harmonization 293 

For AR, AS, and NAR, each cohort imputed their data separately using the 1000 Genomes 294 
Project (1KGP) phase 1, version 3 release, and conducted the genome-wide association 295 
analysis adjusted for sex and if necessary for age and principal components (Supplementary 296 
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Table COHORTS). All studies included individuals of European descent, except Generation R 297 
and RAINE, comprising a mixed, multi-ethnic population. We utilized EasyQC v. 9.236 for quality 298 
control and marker harmonization for cohort-level meta-GWAS summary files. Cohort data was 299 
harmonized to genome build GRCh37 and checked against 1KGP phase 3 reference allele 300 
frequencies for processing problems. GWAS summary “karyograms” were visually inspected to 301 
catch cohorts with incomplete data. Distributions of estimate coefficients and errors, as well as 302 
“Standard error vs. sample size”- and “p value vs. z-score” plots were inspected for each cohort 303 
for systematic errors in statistical models. Ambiguous markers that were non-unique in terms of 304 
both genomic position and allele coding were removed. A minimum imputation score of 0.3 (R2) 305 
or 0.4 (proper_info) was required for markers. A minimum minor allele count of 7 was required 306 
for each marker in each cohort, as suggested by the GIANT consortium and EasyQC. 307 
 308 

Meta-Analysis 309 

For AR, AS, and NAR, meta-analysis for the discovery phase was conducted using GWAMA37 310 
with an inverse variance weighted fixed-effect model with genomic control correction of the 311 
individual studies. Each locus is represented by the variant showing the strongest evidence 312 
within a 1Mb buffer. Loci were inspected visually by plotting genomic neighbourhood and 313 
coloring for 1KGP r2 values. From the pool of genomewide significant markers in the discovery, 314 
one locus with index marker rs193243426 without a credible LD structure was removed from 315 
further analysis (Supplementary Fig. 10). Heterogeneity was assessed with Cochran’s Q test. 316 
Meta-analysis of replication candidates from the AR discovery phase was carried out using R 317 
version 3.4.0, and the meta package version 4.8-2 with an inverse variance weighted fixed-318 
effect model. For a subset of markers, cohorts reported suitable proxies (r2>0.85), where 319 
followed-up markers were not present or had insufficient imputation or genotyping quality 320 
(Supplementary Table 23).  321 

Gene set overrepresentation analysis, discovery phase 322 

To facilitate selection of biologically relevant discovery candidates in the sub-genomewide 323 
significant stratum (5e-8 < p < 1e-6), we employed a custom gene set overrepresentation 324 
analysis algorithm implemented in R, with a scoring and permutation regime modelled after 325 
MAGENTA.38 Genes with lengths less than 200bp, with copies on multiple chromosomes, and 326 
with multiple copies on the same chromosome more than 1Mb apart were removed from 327 
analysis. Gene models (GENCODE v 19) were downloaded from the UCSC Table Browser,39 328 
and expanded 110 kb upstream, and 40 kb downstream, similar to MAGENTA. The HLA region 329 
was excluded from analysis (chromosome 6: 29,691,116-33,054,976). Similar to MAGENTA, 330 
gene scores were adjusted for number of markers per gene, gene width, recombination 331 
hotspots, genetic distance, and number of independent markers per gene, all with updated data 332 
from UCSC Table Browser. For the gene set overrepresentation permutation calculation, gene 333 
sets from the MSigDB collections c2, c3, c5, c7, and hallmark, were included.40 A MAGENTA-334 
style enrichment cutoff at 95% was used. Gene sets with FDR<0.05 were considered. 335 
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Conditional analyses 336 

To identify additional independent markers at each discovery genomic region, we used 337 
Genome-wide Complex Trait Analysis (GCTA) v. 1.26.0.41 Within a window of +/- 1Mb of each 338 
discovery phase index marker, all markers were conditioned on the index using the --cojo-cond 339 
feature of GCTA with default parameters. Plink v. v1.90b3.4242 was used to calculate r2 for 340 
GCTA with the UK10K full genotype panel43 as reference. A total of 42 of 52 markers from the 341 
full discovery phase were present in UK10K. As a MAF-dependent inflation of conditional p-342 
values was observed (data not shown), only conditional markers with MAF >= 10% were 343 
selected. 344 

Locus definition and credible sets for VEP annotation 345 

Discovery loci were defined as index markers extended with markers in LD (r2 >= 0.5), based on 346 
the 1KGP phase 3. Protein coding gene transcript models (GENCODE V24) were downloaded 347 
from the UCSC Table Browser, and nearest upstream, downstream, as well as all genes within 348 
the extended loci were annotated. 349 
Credible sets for each locus were calculated using the method of Morris, A.P44. 350 
LD was calculated for each discovery index variant within +/- 500 kb, and markers with r2<0.1 351 
were excluded. For the remaining markers, the Bayesian Factor (ABF) values and the posterior 352 
probabilities (PostProb) were calculated, and cumulative posterior probability values were 353 
generated based ranking markers on ABF. Finally, variants were included in the 99% credible 354 
set until the cumulative posterior probability was greater or equal than 0.99. 355 
Credible sets for each loci was annotated with information on mutation impact in coding regions 356 
using the Variant effect Prediction (VeP) REST API45, exporting only the nonsynonymous 357 
substitutions. 358 

GWAS catalogue lookup 359 

For annotation of markers with identification in previous GWA studies, the GWAS catalog was 360 
downloaded from NHGRI-EBI (v.1.0.1, 2016-11-28). For this analysis, AR loci were lifted from 361 
genomic build GRCh37 to GRCh38, and extended with +/- 1Mb in each direction before being 362 
overlapped with GWAS catalog annotations. Relevant GWAS catalog overlap traits were binned 363 
into trait groups “Allergic Rhinitis”, “Asthma”, “Autoimmune”, “Eczema”, “Infectious Diseases”, 364 
“Lung-related Traits”, and “Other allergy”. A million random genomic intervals of the same length 365 
(2Mb) were obtained to generate a background overlap distribution, and p-values were 366 
calculated from this background. 367 

HLA classical allele analysis 368 

Analyses of imputed classical HLA-alleles were performed in the 23andMe study (AR discovery 369 
population) comprising 49,180 individuals with allergic rhinitis and 124,102 controls.  370 
HLA imputation was performed with HIBAG.46 We imputed allelic dosage for HLA-A, B, C, 371 
DPB1, DQA1, QB1, and DRB1 loci at four-digit resolution using the default settings of HIBAG 372 
for a total of 292 classical HLA alleles.  373 
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Using an approach suggested by P. de Bakker,47 we downloaded the files that map HLA alleles 374 
to amino acid sequences from https://www.broadinstitute.org/mpg/snp2hla/ and mapped our 375 
imputed HLA alleles at four-digit resolution to the corresponding amino acid sequences; in this 376 
way we translated the imputed HLA allelic dosages directly to amino acid dosages. We encoded 377 
all amino acid variants in the 23andMe European samples as 2395 bi-allelic amino acid 378 
polymorphisms as previously described.48  379 
Similar to the SNP imputation, we measured imputation quality using r2, which is the ratio of the 380 
empirically observed variance of the allele dosage to the expected variance assuming Hardy-381 
Weinberg equilibrium.  382 
To test associations between imputed HLA alleles, amino acid variants, and phenotypes, we 383 
performed logistic regression using the same set of covariates used in the SNPbased GWAS. 384 
We applied a forward stepwise strategy, within each type of variant, to establish statistically 385 
independent signals in the HLA region. Within each variant type, we first identified the most 386 
strongly associated signals (lowest p-value) and performed forward iterative conditional 387 
regression to identify other independent signals. All analyses were controlled for sex and five 388 
principal components of genetic ancestry. The p-values were calculated using a likelihood ratio 389 
test.  390 
 391 

Structural visualization of amino acid variants 392 

Structural visualization of amino acid variants was performed for the strongest associated 393 
variants in HLA-DQB1 (position 30) and HLA-B (position 116), respectively (Supplementary 394 
Table 10) and were made using X-ray structures from Protein Data Bank (PDB).49 To find the 395 
best structure we used the specialized search function in the Immune Epitope Database,50 396 
selecting only X-ray crystalized structures for the specific MHC type HLA-DQB1 and HLA-B. 397 
Using this criterion, we found 17 crystallized structures for HLA-DQB1 and 164 structures for 398 
HLA-B. From these lists, we selected the structure with the lowest resolution and the amino 399 
acids encoded by the reported top SNPs. The PDB accession code for the selected structures 400 
was 4MAY51 for HLA-DQB1 and 2A8352 for HLA-B and both structures were visualized using 401 
PyMOL (http://www.pymol.org). Furthermore, we used PyMOL to measure intra-molecular 402 
distances from the side chain of the amino acids associated with allergic rhinitis to the C atoms 403 
in the peptide. This distance measure was chosen to accommodate the possibility for different 404 
amino acids in the peptide. In order for two amino acids to interact the distance should be 405 
approximately 4Å or less. We measured distances of 6Å (HLA-DQB1) and 7Å (HLA-B), however 406 
these distances do not include the peptide side chains which range from 1.5 Å – 8.8 Å. 407 
Therefore, we estimate that physical interaction between the amino acids encoded by the top 408 
SNPs and the peptide is likely. 409 

Genetic heritability and genetic correlation 410 

For calculating genetic heritability and genetic correlation between AR and AS, as well as 411 
between clinical cohorts and 23andMe within AR, we utilized the LD score regression based 412 
method as implemented by LDSC v.1.0.45,53 Population prevalence was set to 10% for AR and 413 
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AS. Genetic correlation analysis between AR, AS and published GWAS studies was carried out 414 
using the LDHUB platform v1.3.154 against all traits, but excluding Metabolites55.    415 

eQTL sources and analysis 416 

From GTEx V6p56, all significant variant-gene cis eQTL pairs for whole blood, lung, and EBV-417 
transformed lymphocytes were downloaded from https://gtexportal.org, and carried forward in 418 
analysis. From Westra et al.57, both cis and trans eQTLs in whole blood were downloaded, and 419 
variant-gene pairs with FDR < 0.1 were carried forward in analysis. From Fairfax et al.58, cis 420 
eQTLs from monocytes and B cells were downloaded, and variant-gene pairs with FDR < 0.1 421 
were carried forward in analyses. From Bonder et al.58, meQTLs from whole blood were 422 
downloaded, and variant-probe pairs with FDR < 0.05 were carried forward in analyses. From 423 
Nicodemus-Johnson et al.59, cis eQTLs and meQTLs from lung were downloaded, and variant-424 
gene pairs with FDR < 0.1 were carried forward in analyses. From Momozawa et al. [in press, 425 
personal correspondence], cis eQTLs from blood cell types CD14, CD15, CD19, CD4, and CD8 426 
were downloaded, and variant-gene pairs with a weighted correlation of >= 0.6 were carried 427 
forward to analysis. For table 2 priority genes, protein coding information was downloaded from 428 
the UCSC Table Browser, using the “transcriptClass” field from the 429 
“wgEncodeGencodeAttrsV24lift37” table. 430 

Promoter Capture Hi-C Gene Prioritisation 431 

To assess spatial promoter interactions in the discovery set, we performed a Capture Hi-C 432 
Gene Prioritisation (CHIGP) as described in Javierre et al.60 and 433 
https://github.com/ollyburren/CHIGP using recommended settings and data sources: 0.1cM 434 
recombination blocks, 1KGP EUR reference population, coding markers from the GRCh37 435 
Ensembl assembly and the CHICAGO-generated61 Promoter Capture Hi-C peak matrix data 436 
from 17 human primary blood cell types supplied in the original paper. The resulting protein-437 
coding prioritized genes (gene score > 0.5) were used in the downstream network analysis, 438 
from cell types "Fetal thymus", "Total CD4 T cells", "Activated total CD4 T cells", "Non-activated 439 
total CD4 T cells", "Naive CD4 T cells", "Total CD8 T cells", "Naive CD8 T cells", "Total B cells", 440 
"Naive B cells", "Endothelial precursors", "Macrophages M0", "Macrophages M1", 441 
"Macrophages M2", "Monocytes", and "Neutrophils". 442 

Gene set overrepresentation analysis of known and replicating novel loci 443 

All high-confidence gene symbols from eQTL and meQTL sources, PCHiC, as well as genes 444 
(models extended 110kb upstream, and 40kb downstream) within each r2-based loci definition  445 
from known and replicating novel loci were input into the pathway-based set over-representation 446 
analysis module of ConsensusPathDB (CPDB) database and tools62 with 229 of 277 gene 447 
identifiers translated. In addition, these same symbols were used for Ingenuity pathway analysis 448 
(IPA; www.ingenuity.com; a curated database of the relationships between genes obtained from 449 
published articles, and genetic and expression data repositories) to identify biological pathways 450 
common to genes. IPA determines whether the associated genes are significantly enriched in a 451 
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specific biological function or network by assessing direct interactions. We assigned significance 452 
if right-tailed Fisher’s exact test p-value < 0.05. 453 
eQTL/meQTL, PCHiC and locus gene intersections were visualized using the UpSetR 454 
package63. 455 

Tissue overrepresentation 456 

To assay the enrichment of variants associated with AR in tissue specific gene expression sets, 457 
we utilized the DEPICT enrichment method64, using a p-value threshold of 1e-5, and standard 458 
settings.    459 

Enrichment of regulatory regions 460 

To assay the enrichment of variants associated with AR in regions of open chromatin and 461 
specific histone marks, we utilized the GWAS Analysis of Regulatory or Functional Information 462 
Enrichment with LD correction (GARFIELD) method65. In essence, GARFIELD performs greedy 463 
pruning of GWAS markers (LD r2 > 0.1) and then annotates them based on functional 464 
information overlap. Next, it quantifies Fold Enrichment (FE) at various GWAS significance 465 
cutoffs and assesses them by permutation testing, while adjusting for minor allele frequency, 466 
distance to nearest transcription start site and number of LD proxies (r2 > 0.8). GARFIELD was 467 
run with 10,000,000 permutations, and otherwise default settings. 468 

PARF 469 

Population-attributable risk fractions (PARFs) were estimated from B58C, a general-population 470 
sample with participant ages 44-45 years also contributing to the discovery stage. The genetic 471 
risk score was calculated by applying the pooled per-allele coefficients (ln(OR) values) from the 472 
AR discovery set to the number of higher-risk alleles of each of the 41 established (known 473 
genome-wide significant and novel replicated loci), one SNP per locus. Because there were no 474 
individuals observed with zero higher-risk alleles, the prevalence of sensitization for individuals 475 
in the lowest decile of the genetic risk score distribution was used to derive PARF estimates on 476 
the assumption that this 10% of the population was unexposed. This method has the advantage 477 
that it does not predict beyond the bounds of the data, but its results are conservative. The 478 
PARF was then derived (with 95% confidence interval) by expressing the difference between 479 
the observed prevalence and the predicted (unexposed) prevalence as a percentage of the 480 
observed prevalence. PARFs were estimated using the 41 AR loci in relation to AR, AS and 481 
NAR, respectively. 482 

Protein network and drug interactions 483 

In order to analyse protein-protein-drug interaction networks, STRING (V10)66 was used. Protein 484 
network data (9606.protein.links.v10.txt.gz) and protein alias data (9606.protein.aliases.v10.txt) 485 
files were downloaded from the string db website [http://string-db.org/]. GWAS hits stratified on 486 
‘all’, ‘blood’ and ‘lung’ were converted to Ensembl protein ids using the protein alias data. The 487 
interactors were subsequently identified using the link data at a ‘high confidence cutoff of >0.7’ 488 
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as described in the STRING FAQ. The interactor Ensembl protein ids were then converted to 489 
UniProt gene names and both hits and interactors were then analyzed for interactions with FDA 490 
approved drugs using the ChEMBL Database67 API via Python (v2.7.12). Lastly, stratified 491 
networks consisting of GWAS hits connected to interactors and drugs connected to both GWAS 492 
hits and interactors were visualised using GGraph (v1.0.0), iGraph (v1.0.1), TidyVerse (v1.1.1) 493 
under R (v3.3.2). 494 

Data availability 495 

Genome-wide results are available on request through the corresponding author, on condition of 496 
signing any Data Transfer Agreements required according to the institutional review board 497 
(IRB)-approved protocols of contributing studies. 498 
  499 
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Table legends 650 

Table 1 651 
Association results of index markers (variant with lowest p-value for each locus) from the 652 
discovery phase. Column “Nearest gene” denotes nearest up- and downstream gene (for 653 
intergenic variants with two genes listed), or surrounding gene (for intronic variants with one 654 
gene listed), with the exception of rs5743618, an exonic missense variant within TLR1; and 655 
rs1504215, an exonic synonymous variant within BACH2. Replication and combined p values 656 
are for a one-sided test.  657 
 658 
Table 2 659 
Functional description of known and novel replicating loci. ‘Locus genes’ column denotes genes 660 
overlapping with R2-extended loci (See Methods). ‘Missense variant’ column denotes variants 661 
with a predicted missense coding consequences. ‘e/meQTL priority genes’ denotes genes 662 
prioritized from the combined e/meQTL analysis. ‘PCHiC priority genes’ denotes genes 663 
prioritized from the PCHiC chromatin capture analysis.       664 
a) Overlap for rs35350651 with group “other allergy” is “eosinophil count”, b) rs11671925 = 665 
eosinophilic esophagitis.  666 
  667 

  668 
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Figure legends 669 

Figure 1: Manhattan plot of the meta-GWAS discovery phase 670 
Circular plot of p-values of genetic marker association to allergic rhinitis from the discovery 671 
phase. Only markers with p < 1e-3 are shown. Labels indicate nearest gene name for index 672 
marker in locus (marker with lowest p-value). Green labels indicate loci previously associated 673 
with allergy; blue labels indicate novel AR loci; grey labels indicate novel loci that were not 674 
carried forward to the replication phase. Green line indicates level of genome wide significance 675 
(p = 5e-8).     676 
 677 
Figure 2: Structural visualization of amino acid variants associated with allergic rhinitis  678 
The surface of the MHC molecules is shown in white, while the backbone of the bound peptides 679 
is shown in dark gray. The amino acid variant is highlighted in red and the peptide binding 680 
pockets of the MHC molecule is indicated with dashed circles. P1-P9 refers to positions in the 681 
peptides counting from the N-termini. (A) Localization of the strongest associated amino acid 682 
variant in HLA-DQB (MHC class II), HLA-DQB1 His30, located in the peptide binding pocket 683 
close to P6 of the peptide with a distance of 6Å (excluding peptide side chain). The protective 684 
amino acid variant at this location in relation to AR is His, whereas the risk variant is Ser. 685 
Histidine is positively charged and has a large aromatic ring, whereas Ser is not charged and 686 
not aromatic. Therefore, this mutation results in a significant change of the binding pocket 687 
environment. (B) Localization of the strongest associated amino acid variation in HLA-B (MHC 688 
class I), HLA-B AspHisLeu116, located close to P9 with a distance of 7Å (excluding peptide side 689 
chain). The close proximity to the bound peptide for both variants indicates that they are likely to 690 
affect the MHC-peptide interaction and thereby which peptides are presented. 691 
 692 
Figure 3: Enrichment of allergic rhinitis-associated variants in tissue-specific open 693 
chromatin 694 
Enrichment of variants associated with allergic rhinitis (at p < 1e-08 as threshold for marker 695 
association) in 189 cell types from ENCODE and Roadmap epigenomics data. Enrichment and 696 
p-value was calculated empirically against a permuted genomic background using the 697 
GARFIELD tool. Red labels indicate blood and blood-related cell-types, grey labels indicate 698 
other cell types. Due to number of permutations = 1e7, empirical p-values reached a minimum 699 
ceiling of 1/1e7. FDR threshold = 0.00026. For epstein-Barr virus transformed B-lymphocyte cell 700 
types (cell type “GM****”), only most enriched instance is shown (“B-Lymphocyte”). NHEK = 701 
normal human epidermal keratinocytes, HMEC/vHMEC = mammary epithelial cells, HCM = 702 
human cardiac myocytes , WI-38 = lung fibroblast-derived, HRGEC = human renal glomerular 703 
endothelial cell, HCFaa = Human Cardiac Fibroblasts-Adult Atrial cell, HMVEC−dBl−Neo = 704 
human microvascular endothelial cells, Th1 = T helper cell, type 1, Th2 = T helper cell, type 2. 705 
 706 
Figure 4: Interaction network between drugs and proteins from genes associated with 707 
allergic rhinitis 708 
Grey nodes represent locus genes as well as genes prioritized from e/meQTL and PCHiC 709 
sources. Blue nodes represent drugs from the ChEMBL drug database. Edges represent very-710 
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high confidence interactions from the STRING database (for locus-locus interactions) and drug 711 
target evidence (for drug-locus interactions). Red borders indicate genes with protein products 712 
that were significantly enriched in the “Th1 and Th2 Activation” pathway (-log[p-value] >19.1) 713 
from the IPA pathway analysis. 714 

 715 
  716 
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Table 1. Association results of index markers (variant with lowest p-value for each locus). Column “Nearest gene” denotes nearest up- and downstream gene (for intergenic variants with 
two genes listed), or surrounding gene (for intronic variants with one gene listed), with the exception of rs5743618, an exonic missense variant within TLR1; and rs1504215, an exonic 
synonymous variant within BACH2. Replication and combined p values are for a one-sided test. EA/OA=effect allele/other allele. P-value is calculated from the logistic regression model. 
Het.P=p-value for heterogeneity obtained from Cochrane’s Q test. * Variants also reported associated with a combined asthma/eczema/hay fever phenotype by Ferreira et al.29 (within +/- 
1Mb). 
 

Discovery 

Variant Locus Nearest genes EA/OA EAF n (studies) OR 
[95% conf.int] P Het. P 

Known 
rs34004019 6p21.32 HLA-DQB1;HLA-DQA1 G/A 0.27 196,951 (11) 0.89 [0.87-0.90] 1.00E-30 0.41 
rs950881 2q12.1 IL1RL1;IL1RL1 T/G 0.15 212,120 (18) 0.88 [0.87-0.90] 1.74E-30 0.91 
rs5743618 4p14 TLR1;TLR10 A/C 0.27 210,652 (17) 0.90 [0.89-0.92] 4.38E-27 0.70 
rs1438673 5q22.1 CAMK4;WDR36 C/T 0.50 212,120 (18) 1.08 [1.07-1.10] 3.15E-26 0.26 
rs7936323 11q13.5 LRRC32;C11orf30 A/G 0.48 212,120 (18) 1.08 [1.06-1.09] 6.53E-24 0.0001 
rs2428494 6p21.33 HLA-B;HLA-C A/T 0.42 195,753 (12) 1.08 [1.06-1.09] 7.01E-19 0.25 
rs11644510 16p13.13 RMI2;CLEC16A T/C 0.37 212,120 (18) 0.93 [0.92-0.95] 1.58E-17 0.65 
rs12939457 17q12 GSDMB;ZPBP2 C/T 0.44 212,120 (18) 0.94 [0.92-0.95] 2.35E-17 0.02 
rs148505069 4q27 IL21;IL2 G/A 0.33 212,120 (18) 1.07 [1.05-1.08] 2.54E-15 0.02 
rs13395467 2p25.1 ID2;RNF144A G/A 0.28 212,120 (18) 0.94 [0.92-0.95] 9.93E-15 0.61 
rs9775039 9p24.1 IL33;RANBP6 A/G 0.16 212,120 (18) 1.08 [1.06-1.10] 2.22E-14 0.40 
rs2164068 2q33.1 PLCL1 A/T 0.49 212,120 (18) 0.94 [0.93-0.96] 4.21E-14 0.82 
rs2030519 3q28 TPRG1;LPP G/A 0.49 212,120 (18) 1.06 [1.04-1.07] 1.83E-13 0.12 
rs11256017 10p14 CELF2;GATA3 T/C 0.18 212,120 (18) 1.07 [1.05-1.09] 2.72E-12 0.60 
rs17294280 15q22.33 AAGAB;SMAD3 G/A 0.25 212,120 (18) 1.07 [1.05-1.09] 5.97E-12 0.07 
rs7824993 8q21.13 ZBTB10;TPD52 A/G 0.37 212,120 (18) 1.05 [1.04-1.07] 1.86E-10 0.56 
rs9282864 16p11.2 SULT1A1;SULT1A2 C/A 0.33 208,761 (16) 0.94 [0.93-0.96] 4.69E-10 0.03 
rs9687749 5q31.1 IL13;RAD50 T/G 0.44 207,604 (16) 1.06 [1.04-1.09] 1.84E-09 0.19 
rs61977073 14q21.1 TTC6 G/A 0.22 212,120 (18) 1.06 [1.04-1.08] 5.78E-09 0.05 
rs6470578 8q24.21 TMEM75;MYC T/A 0.28 212,120 (18) 1.05 [1.03-1.07] 4.36E-08 0.02 
rs3787184 20q13.2 NFATC2;KCNG1 G/A 0.19 207,604 (16) 0.94 [0.93-0.96] 4.76E-08 0.69   
         Replication Combined 

Novel         n (studies) OR 
[95% conf.int] P FWER n (studies) OR 

[95% conf.int] P Het. 
P 

rs7717955* 5p13.2 CAPSL;IL7R T/C 0.27 212,120 (18) 0.95 [0.93-0.96] 1.50E-09 0.24 679,247 (10) 0.93 [0.91-0.94] 4.09E-25 1.06E-23 891,367 (28) 0.94 [0.93-0.95] 3.78E-32 0.09 
rs63406760* 12q24.31 CDK2AP1;C12orf65 G/- 0.26 210,652 (17) 0.93 [0.91-0.95] 5.12E-14 0.91 675,338 (7) 0.95 [0.93-0.96] 3.27E-12 8.51E-11 885,990 (24) 0.94 [0.93-0.95] 2.54E-24 0.89 
rs1504215* 6q15 BACH2;GJA10 A/G 0.34 207,604 (16) 0.95 [0.94-0.97] 1.49E-08 0.02 679,247 (10) 0.95 [0.94-0.97] 1.99E-11 5.17E-10 886,851 (26) 0.95 [0.94-0.96] 1.54E-18 0.05 
rs28361986* 11q23.3 CXCR5;DDX6 A/T 0.20 212,120 (18) 0.93 [0.91-0.95] 1.81E-14 0.87 675,919 (8) 0.94 [0.93-0.96] 7.92E-11 2.06E-09 888,039 (26) 0.94 [0.92-0.95] 2.32E-23 0.91 
rs2070902* 1q23.3 AL590714.1;FCER1G T/C 0.25 212,120 (18) 1.06 [1.04-1.08] 1.03E-10 0.18 679,247 (10) 1.05 [1.03-1.06] 7.27E-10 1.89E-08 891,367 (28) 1.05 [1.04-1.06] 6.19E-19 0.23 
rs111371454* 15q15.1 ITPKA;RTF1 G/A 0.21 212,120 (18) 1.06 [1.03-1.08] 1.65E-07 0.17 675,338 (7) 1.04 [1.03-1.06] 8.47E-09 2.20E-07 887,458 (25) 1.05 [1.03-1.06] 1.28E-14 0.22 
rs12509403* 4q24 MANBA;NFKB1 T/C 0.32 212,120 (18) 0.95 [0.94-0.97] 9.97E-09 0.27 679,247 (10) 0.96 [0.95-0.97] 1.86E-08 4.84E-07 891,367 (28) 0.96 [0.95-0.97] 1.17E-15 0.39 
rs9648346* 7p15.1 JAZF1;TAX1BP1 G/C 0.22 207,604 (16) 1.05 [1.03-1.07] 3.62E-08 0.74 679,247 (10) 1.04 [1.03-1.06] 1.39E-07 3.63E-06 886,851 (26) 1.05 [1.03-1.06] 3.30E-14 0.48 
rs35350651* 12q24.12 ATXN2;SH2B3 C/- 0.49 206,136 (15) 1.04 [1.03-1.06] 6.63E-08 0.60 672,701 (6) 1.04 [1.02-1.05] 1.41E-07 3.66E-06 878,837 (21) 1.04 [1.03-1.05] 5.82E-14 0.43 
rs2519093* 9q34.2 ABO;OBP2B T/C 0.20 212,120 (18) 1.06 [1.04-1.09] 4.96E-11 0.38 675,919 (8) 1.04 [1.03-1.06] 2.96E-07 7.68E-06 888,039 (26) 1.05 [1.04-1.07] 2.79E-16 0.61 
rs62257549 3p21.2 VPRBP A/G 0.20 212,120 (18) 0.95 [0.93-0.97] 7.13E-08 0.45 677,615 (9) 0.96 [0.94-0.97] 3.37E-07 8.76E-06 889,735 (27) 0.95 [0.94-0.97] 1.84E-13 0.53 
rs11677002 2p23.2 FOSL2;RBKS C/T 0.45 212,120 (18) 0.96 [0.95-0.98] 3.80E-07 0.21 679,247 (10) 0.97 [0.96-0.98] 3.54E-07 9.20E-06 891,367 (28) 0.97 [0.96-0.97] 7.08E-13 0.36 
rs35597970* 10q24.32 ACTR1A;TMEM180 -/A 0.45 210,652 (17) 1.06 [1.04-1.07] 1.34E-13 0.96 676,970 (8) 1.03 [1.02-1.05] 4.37E-07 1.14E-05 887,622 (25) 1.04 [1.03-1.05] 5.42E-18 0.53 
rs2815765 1p31.1 LRRIQ3;NEGR1 T/C 0.37 212,120 (18) 0.95 [0.94-0.97] 1.18E-09 0.59 679,247 (10) 0.97 [0.95-0.98] 6.16E-07 1.60E-05 891,367 (28) 0.96 [0.95-0.97] 9.45E-15 0.52 
rs11671925* 19q13.11 CEBPA;SLC7A10 A/G 0.17 206,136 (15) 0.94 [0.92-0.96] 1.80E-08 0.97 677,551 (9) 0.96 [0.94-0.98] 2.80E-06 7.29E-05 883,687 (24) 0.95 [0.94-0.96] 5.91E-13 0.60 
rs2461475* 12q24.31 SPPL3;ACADS C/T 0.47 212,120 (18) 1.04 [1.02-1.05] 9.19E-07 0.97 677,551 (9) 1.03 [1.02-1.04] 6.52E-06 0.0002 889,671 (27) 1.03 [1.02-1.04] 3.81E-11 0.83 
rs6738964* 2q36.3 SPHKAP;DAW1 G/T 0.24 212,120 (18) 0.96 [0.94-0.97] 4.51E-07 0.72 679,247 (10) 0.97 [0.96-0.98] 4.96E-05 0.0013 891,367 (28) 0.96 [0.95-0.97] 1.86E-10 0.87 
rs10519067* 15q22.2 RORA A/- 0.13 212,120 (18) 0.93 [0.91-0.96] 1.78E-09 0.37 442,354 (7) 0.93 [0.90-0.96] 7.53E-05 0.0020 654,474 (25) 0.93 [0.92-0.95] 5.53E-13 0.36 
rs138050288* 1p36.23 RERE;SLC45A1 -/CA 0.29 210,652 (17) 1.05 [1.04-1.07] 5.96E-10 0.71 675,338 (7) 1.03 [1.01-1.04] 0.0002 0.0046 885,990 (24) 1.04 [1.03-1.05] 6.62E-12 0.63 
rs7328203 13q14.11 TNFSF11;AKAP11 G/T 0.46 212,120 (18) 1.05 [1.03-1.06] 5.94E-09 0.90 677,551 (9) 1.02 [1.01-1.04] 0.0005 0.0134 889,671 (27) 1.03 [1.02-1.04] 1.28E-10 0.78 
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Table 2. Functional description of known and novel replicating loci. ‘Locus genes’ column denotes genes overlapping with R2-extended loci (See Methods). ‘Missense variant’ column 
denotes variants with a predicted missense coding consequences. ‘e/meQTL priority genes’ denotes genes prioritized from the combined e/meQTL analysis. ‘PCHiC priority genes’ denotes 
genes prioritized from the PCHiC chromatin capture analysis. * Variants also reported associated with a combined asthma/eczema/hay fever phenotype by Ferreira et al.29 (within +/- 1Mb).  

Variant Locus Locus genes Missense
variant e/meQTL priority genes PCHiC priority genes Possible function 

Known   
rs13395467 2p25.1  ID2 Transcription factor required for specific innate cell, T cell and B cell 

subsets  
rs950881 2q12.1 IL1RL1, IL18R1, IL18RAP IL18R1, IL18RAP, IL1RL1, MFSD9 IL1RL1 Interleukin receptor, IL33-signalling, Th2-response
rs2164068 2q33.1 PLCL1 PLCL1 COQ10B, MARS2, PLCL1, RFTN2, 

SF3B1 
PLCL1 Phospholipase, intracellular signalling

rs2030519 3q28 LPP Transcription factor, Th2-differentiation
rs5743618 4p14 TLR10, TLR1, TLR6, FAM114A1 TLR1 FAM114A1, TLR1, TLR10, TLR6 Pattern recognition receptors, innate immunity
rs148505069 4q27 IL2 IL21 Interleukin, immune regulatory effects
rs1438673 5q22.1 WDR36, CAMK4 TSLP Th2 immune responses
rs9687749 5q31.1 IL13, IL4, IL5, RAD50 IL13 Interleukin, IgE secretion, allergic inflammation
rs34004019 6p21.32 HLA-DRB1, HLA-DQB1, HLA-

DQA2, HLA-DQA1 
C4A, CYP21A2, HLA-DOB, HLA-DQA1, 
HLA-DQA2, HLA-DQB1, HLA-DQB2, 
HLA-DRA, HLA-DRB1, HLA-DRB5, 
LY6G5B, TAP2 

Antigen presentation, self tolerance

rs2428494 6p21.33 MICA, HLA-B, HLA-C C4A, HCG27, MICA Stress induced ligand recognized by NK and T cells
rs7824993 8q21.13  MRPS28 Unknown
rs6470578 8q24.21  MYC Transcription factor, B-cell proliferation and differentiation 
rs9775039 9p24.1 IL33 CD274 IL33: Interleukin, Th2-signalling. CD274: Immune regulation 
rs11256017 10p14  
rs7936323 11q13.5 C11orf30, LRRC32 Treg expressed, TGF-beta signalling
rs61977073 14q21.1 TTC6, FOXA1 FOXA1 Transcription factor, Treg differentiation
rs17294280 15q22.33 SMAD3, IQCH, AAGAB SMAD3 SMAD3 Transcriptional factor, TGF-beta signalling
rs9282864 16p11.2 EIF3C, IL27, NPIPB8, NUPR1, 

SGF29, SULT1A1, SULT1A2 
APOBR, ATXN2L, CLN3, EIF3C, EIF3CL, 
IL27, NPIPB6, NPIPB7, SBK1, SH2B1, 
SPNS1, SULT1A1, SULT1A2, TUFM 

Indcues naïve T cell proliferation and Th1 differentiation while 
suppressing Th17, Th2 and Treg responses. Induces isotype swithcing 
of B cells and has additional effects on innate immune cells. 

rs11644510 16p13.13 RMI2, CLEC16A DEXI C16orf72, CLEC16A, DEXI, GSPT1, 
LITAF, NUBP1, PRM2, PRM3, 
RMI2, RSL1D1, SNN, SOCS1, 
TNP2, TXNDC11, ZC3H7A 

Unknown function. Highly expressed in lung, B- and T-cells 

rs12939457 17q12 GSDMA, GSDMB, IKZF3, LRRC3C, 
PSMD3, ZPBP2 

GSDMB, 
ZPBP2 

GSDMA, GSDMB, IKZF3, MED24, 
ORMDL3, PGAP3, ZPBP2 

GSDMB, ORMDL3 Regulator of sphingolipid synthesis. Endoplasmic reticulum-mediated 
Ca(+2) signaling 

rs3787184 20q13.2 NFATC2 Transcription factor, activated T-cell gene transcription   
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Variant Locus Locus genes Missense

variant e/meQTL priority genes PCHiC priority genes Possible function 

Novel, replicating  
rs2815765 1p31.1 NEGR1 NEGR1 Cell adhesion.
rs138050288* 1p36.23 RERE RERE Transcription factor associated with apoptosis.
rs2070902* 1q23.3 ADAMTS4, AL590714.1, APOA2, 

B4GALT3, DEDD, FCER1G, 
NDUFS2, NR1I3, PCP4L1, PFDN2, 
SDHC, TOMM40L 

FCER1G, TOMM40L, USF1 Codes for the high affinity IgE receptor involved in allergic responses. 
Present on many cell types, including immune cells and epithelial cells.   

rs11677002 2p23.2 FOSL2, PLB1 FOSL2 Cell cycle and proliferation.
rs6738964* 2q36.3 DAW1 Dynein assembly factor.
rs62257549 3p21.2 VPRBP, RAD54L2 HYAL3, MAPKAPK3, NAT6, RBM15B Required for optimal T cell proliferation after antigen encounter and 

involved in V(D)J recombination during B cell development.  
rs12509403* 4q24 NFKB1, MANBA BDH2, MANBA, NFKB1 NFKB1: Activation of multiple inflammatory pathways, mediating 

signals from toll-like receptors and cytokines.  
rs7717955* 5p13.2 IL7R 

IL7R 
IL7R, LMBRD2, SPEF2, UGT3A2 Necessary for V(D)J recombination of T and B cell receptors. T cell sub-

populations have different levels of IL-7R on the cell surface.  
rs1504215* 6q15 BACH2 BACH2 BACH2 Role in several immune cells, including antigen-induced formation of 

memory B cells and memory T cells.  
rs9648346* 7p15.1 JAZF1 CREB5, JAZF1 Transcriptional repressor, associated with systemic sclerosis, type 2 

diabetes and endometrial stromal tumors. 
rs2519093* 9q34.2 ABO, GBGT1, OBP2B, RPL7A, 

STKLD1, SURF2 
ABO, GBGT1, MED22, SURF1, SURF4, 
SURF6 

Allelic variants of ABO determine blood group type. 

rs35597970* 10q24.32 CUEDC2, PSD, TMEM180, 
ACTR1A, SUFU 

ACTR1A, ARL3, AS3MT, SUFU, 
TMEM180, TRIM8 

NFKB2 Subunit of NFKB complex which is expressed in many cell types and 
involved in regulating immune responses, including TLR-4 and 
cytokine signaling.   

rs28361986* 11q23.3 DDX6, CXCR5 CXCR5, TRAPPC4 CXCR5, DDX6 Chemokine receptor present on B cells and involved in B cell migration 
to the B cell follicular zone in lymph nodes and spleen; CXCR5 is also 
expressed on a subset of follicular T cells. 

rs35350651* 12q24.12 SH2B3, FAM109A, ATXN2 
SH2B3 

ALDH2, SH2B3, TMEM116 Involved in hematopoiesis as well as downstream of T cell receptor 
activation. 

rs63406760* 12q24.31 C12orf65, CDK2AP1, MPHOSPH9, 
SBNO1 

SBNO1 ABCB9, ARL6IP4, C12orf65, CDK2AP1, 
MPHOSPH9, OGFOD2, PITPNM2, 
RILPL2, SBNO1, SETD8, SNRNP35 

DDX55 DDX55: Involved in multiple nuclear processes. 

rs2461475* 12q24.31 SPPL3 C12orf43, OASL, RNF10, SPPL3 SPPL3: Deletion results in decreased numbers of NK cells. OASL: 
Involved in IFN-gamma signaling.  

rs7328203 13q14.11 TNFSF11, AKAP11 AKAP11 Enhances T cell activation by dendritic cells. 
rs111371454* 15q15.1 ITPKA, NDUFAF1, RTF1, TYRO3, 

LTK 
NDUFAF1, 
NUSAP1 

ITPKA, LTK, NDUFAF1, OIP5, RPAP1 TYRO3: Inhibits TLR-mediated immune signaling and activates SOCS1 
(identified as potential gene in previous screen). LTK: Leukocyte 
tyrosine kinase that is involved in downstream T cell receptor 
signalling.  

rs10519067* 15q22.2 RORA Involved natural helper cell development and allergic disease.  
rs11671925 19q13.11 SLC7A10, LRP3 

  

CEBPA, CEBPG CEBPA: Important for lung development. Associated with 
inflammatory bowel disease. CEBPG: Transcriptional enhancers for the 
immunoglobulin heavy chain.  
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