552 research outputs found

    A macro-micro mechanism design for laser cutting process

    Get PDF
    This paper is organized to provide the novel approaches during the design of a machine to shorten the laser cutting process. Macro-micro manipulation concept is employed for the design of this machine both in the mechanical design and in devising the trajectory planning algorithm. Micro-mechanism design along with its calibration process are also explained since they involve novel approaches in this application domain. Trajectory planning algorithms, which are developed in this work, are discussed based on their applicability to CNC system architecture. Finally, experimental results based on a benchmark workpiece are given and the system design is discussed with respect to these results.Republic of Turkey Ministry of Science, Industry and Technology and Coşkunöz Metal Form Inc. (Project code: 01668.STZ.2012-2

    Use of hidden robot concept for calibration of an over-constrained mechanism

    Get PDF
    Overconstrained mechanisms prove useful in applications where high stiffness and low weight is required against high amount of forces while keeping high precision. This study issues a planar two degrees-of-freedom overconstrained parallel manipulator for positioning the end-effector with high acceleration values (>5g) with a positioning precision in the order of 30 micrometers. Since the manufacturing errors were compatible with the end-effector positioning errors, it was required to perform some system identification before the precision and repeatability tests. For the system identification, the end-effector position and motor input values are recorded. However, since the mechanism is overconstrained, the link lengths could not be obtained due to the lack of analytical inverse kinematics solution. In order to cope with this problem, the hidden robot concept is utilized in order to fit a simple kinematic model between the task space and the joint space of the manipulator. Further calibration studies are carried out using the error correction matrix. The test results are presented

    Minimum Jerk Trajectory Planning for Trajectory Constrained Redundant Robots

    Get PDF
    In this dissertation, we develop an efficient method of generating minimal jerk trajectories for redundant robots in trajectory following problems. We show that high jerk is a local phenomenon, and therefore focus on optimizing regions of high jerk that occur when using traditional trajectory generation methods. The optimal trajectory is shown to be located on the foliation of self-motion manifolds, and this property is exploited to express the problem as a minimal dimension Bolza optimal control problem. A numerical algorithm based on ideas from pseudo-spectral optimization methods is proposed and applied to two example planar robot structures with two redundant degrees of freedom. When compared with existing trajectory generation methods, the proposed algorithm reduces the integral jerk of the examples by 75% and 13%. Peak jerk is reduced by 98% and 33%. Finally a real time controller is proposed to accurately track the planned trajectory given real-time measurements of the tool-tip\u27s following error

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need

    3-Axis and 5-Axis Machining with Stewart Platform

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Topics in Machining with Industrial Robot Manipulators and Optimal Motion Control

    Get PDF
    Two main topics are considered in this thesis: Machining with industrial robot manipulators and optimal motion control of robots and vehicles. The motivation for research on the first subject is the need for flexible and accurate production processes employing industrial robots as their main component. The challenge to overcome here is to achieve high-accuracy machining solutions, in spite of the strong process forces required for the task. Because of the process forces, the nonlinear dynamics of the manipulator, such as the joint compliance and backlash, may significantly degrade the achieved machining accuracy of the manufactured part. In this thesis, a macro/micro-manipulator configuration is considered to the purpose of increasing the milling accuracy. In particular, a model-based control architecture is developed for control of the macro/micro-manipulator setup. The considered approach is validated by experimental results from extensive milling experiments in aluminium and steel. Related to the problem of high-accuracy milling is the topic of robot modeling. To this purpose, two different approaches are considered; modeling of the quasi-static joint dynamics and dynamic compliance modeling. The first problem is approached by an identification method for determining the joint stiffness and backlash. The second problem is approached by using gray-box identification based on subspace-identification methods. Both identification algorithms are evaluated experimentally. Finally, online state estimation is considered as a means to determine the workspace position and orientation of the robot tool. Kalman Filters and Rao-Blackwellized Particle Filters are employed to the purpose of sensor fusion of internal robot measurements and measurements from an inertial measurement unit for estimation of the desired states. The approaches considered are fully implemented and evaluated on experimental data. The second part of the thesis discusses optimal motion control applied to robot manipulators and road vehicles. A control architecture for online control of a robot manipulator in high-performance path tracking is developed, and the architecture is evaluated in extensive simulations. The main characteristic of the control strategy is that it combines coordinated feedback control along both the tangential and transversal directions of the path; this separation is achieved in the framework of natural coordinates. One motivation for research on optimal control of road vehicles in time-critical maneuvers is the desire to develop improved vehicle-safety systems. In this thesis, a method for solving optimal maneuvering problems using nonlinear optimization is discussed. More specifically, vehicle and tire modeling and the optimization formulations required to get useful solutions to these problems are investigated. The considered method is evaluated on different combinations of chassis and tire models, in maneuvers under different road conditions, and for investigation of optimal maneuvers in systems for electronic stability control. The obtained optimization results in simulations are evaluated and compared

    Robots in machining

    Get PDF
    Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Micromanipulation-force feedback pushing

    Get PDF
    In micromanipulation applications, it is often desirable to position and orient polygonal micro-objects lying on a planar surface. Pushing micro-objects using point contact provides more flexibility and less complexity compared to pick and place operation. Due to the fact that in micro-world surface forces are much more dominant than inertial forces and these forces are distributed unevenly, pushing through the center of mass of the micro-object will not yield a pure translational motion. In order to translate a micro-object, the line of pushing should pass through the center of friction. Moreover, due to unexpected nature of the frictional forces between the micro-object and substrate, the maximum force applied to the micro-object needs to be limited to prevent any damage either to the probe or micro-object. In this dissertation, a semi-autonomous manipulation scheme is proposed to push microobjects with human assistance using a custom built tele-micromanipulation setup to achieve pure translational motion. The pushing operation can be divided into two concurrent processes: In one process human operator who acts as an impedance controller to switch between force-position controllers and alters the velocity of the pusher while in contact with the micro-object through scaled bilateral teleoperation with force feedback. In the other process, the desired line of pushing for the micro-object is determined continuously so that it always passes through the varying center of friction. Visual feedback procedures are adopted to align the resultant velocity vector at the contact point to pass through the center of friction in order to achieve pure translational motion of the micro-object. Experimental results are demonstrated to prove the effectiveness of the proposed controller along with nanometer scale position control, nano-Newton range force sensing, scaled bilateral teleoperation with force feedback
    corecore