2,119 research outputs found

    Application of UAV based high-resolution remote sensing for crop monitoring

    Get PDF
    Advances in technologies could offer enormous potential for crop monitoring applications, allowing the real-time acquisition of various environmental data. Technology such as high spatio-temporal imagery of unmanned aerial vehicles (UAV’s) can be widely used in crop monitoring applications. These technologies are expected to revolutionize the global agriculture practices, by enabling decision-making during the crop cycle days. Such results allow the effective practice of agricultural inputs, aiding precision agriculture pillars, i.e., applying the right practice in the right place, with the right amount and time. However, the actual exploitation of UAV’s has not been much strong in smart farming, mainly due to the challenges faced during selecting and deploying relevant technologies, including data acquisition and processing methods. The major problem is that there is still no consistent workflow for the use of UAV’s in such areas, as this mechanization is relatively new. In this article, the latest applications of UAV’s for crop monitoring are reviewed. It covers the most common applications, the types of UAV’s used and then we focused on data acquisition methods and technologies, employing the benefit and drawbacks of each. It also indicates the most popular image processing methods and summarizes the potential application in agricultural operations. 

    Exploring Indoor Health: An In-depth Field Study on the Indoor Air Quality Dynamics

    Full text link
    Indoor air pollution, a significant driver of respiratory and cardiovascular diseases, claims 3.2 million lives yearly, according to the World Health Organization, highlighting the pressing need to address this global crisis. In contrast to unconstrained outdoor environments, room structures, floor plans, ventilation systems, and occupant activities all impact the accumulation and spread of pollutants. Yet, comprehensive in-the-wild empirical studies exploring these unique indoor air pollution patterns and scope are lacking. To address this, we conducted a three-month-long field study involving over 28 indoor spaces to delve into the complexities of indoor air pollution. Our study was conducted using our custom-built DALTON air quality sensor and monitoring system, an innovative IoT air quality monitoring solution that considers cost, sensor type, accuracy, network connectivity, power, and usability. Our study also revealed that conventional measures, such as the Indoor Air Quality Index (IAQI), don't fully capture complex indoor air quality dynamics. Hence, we proposed the Healthy Home Index (HHI), a new metric considering the context and household activities, offering a more comprehensive understanding of indoor air quality. Our findings suggest that HHI provides a more accurate air quality assessment, underscoring the potential for wide-scale deployment of our indoor air quality monitoring platform.Comment: 15 pages, 19 figure

    Geospatial information infrastructures to address spatial needs in health: Collaboration, challenges and opportunities

    Get PDF
    Most health-related issues such as public health outbreaks and epidemiological threats are better understood from a spatial–temporal perspective and, clearly demand related geospatial datasets and services so that decision makers may jointly make informed decisions and coordinate response plans. Although current health applications support a kind of geospatial features, these are still disconnected from the wide range of geospatial services and datasets that geospatial information infrastructures may bring into health. In this paper we are questioning the hypothesis whether geospatial information infrastructures, in terms of standards-based geospatial services, technologies, and data models as operational assets already in place, can be exploited by health applications for which the geospatial dimension is of great importance. This may be certainly addressed by defining better collaboration strategies to uncover and promote geospatial assets to the health community. We discuss the value of collaboration, as well as the opportunities that geographic information infrastructures offer to address geospatial challenges in health applications

    Exploring urban metabolism—Towards an interdisciplinary perspective

    Get PDF
    © 2017 The Author(s) The discussion on urban metabolism has been long dominated by natural scientists focussing on natural forces shaping the energy and material flows in urban systems. However, in the anthropocene human forces such as industrialization and urbanization are mobilizing people, goods and information at an increasing pace and as such have a large impact on urban energy and material flows. In this white paper, we develop a combined natural and social science perspective on urban metabolism. More specifically, innovative conceptual and methodological interdisciplinary approaches are identified and discussed to enhance the understanding of the forces that shape urban metabolism, and how these forces affect urban living and the environment. A challenging research agenda on urban metabolism is also presented

    Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis

    Get PDF
    The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions

    Raster Time Series: Learning and Processing

    Get PDF
    As the amount of remote sensing data is increasing at a high rate, due to great improvements in sensor technology, efficient processing capabilities are of utmost importance. Remote sensing data from satellites is crucial in many scientific domains, like biodiversity and climate research. Because weather and climate are of particular interest for almost all living organisms on earth, the efficient classification of clouds is one of the most important problems. Geostationary satellites such as Meteosat Second Generation (MSG) offer the only possibility to generate long-term cloud data sets with high spatial and temporal resolution. This work, therefore, addresses research problems on efficient and parallel processing of MSG data to enable new applications and insights. First, we address the lack of a suitable processing chain to generate a long-term Fog and Low Stratus (FLS) time series. We present an efficient MSG data processing chain that processes multiple tasks simultaneously, and raster data in parallel using the Open Computing Language (OpenCL). The processing chain delivers a uniform FLS classification that combines day and night approaches in a single method. As a result, it is possible to calculate a year of FLS rasters quite easy. The second topic presents the application of Convolutional Neural Networks (CNN) for cloud classification. Conventional approaches to cloud detection often only classify single pixels and ignore the fact that clouds are highly dynamic and spatially continuous entities. Therefore, we propose a new method based on deep learning. Using a CNN image segmentation architecture, the presented Cloud Segmentation CNN (CS-CNN) classifies all pixels of a scene simultaneously. We show that CS-CNN is capable of processing multispectral satellite data to identify continuous phenomena such as highly dynamic clouds. The proposed approach provides excellent results on MSG satellite data in terms of quality, robustness, and runtime, in comparison to Random Forest (RF), another widely used machine learning method. Finally, we present the processing of raster time series with a system for Visualization, Transformation, and Analysis (VAT) of spatio-temporal data. It enables data-driven research with explorative workflows and uses time as an integral dimension. The combination of various raster and vector data time series enables new applications and insights. We present an application that combines weather information and aircraft trajectories to identify patterns in bad weather situations

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin
    corecore