255 research outputs found

    Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth

    Get PDF
    Despite the importance of fungi in soil ecosystem services, a theoretical framework that links soil management strategies with fungal ecology is still lacking. One of the key challenges is to understand how the complex geometrical shape of pores in soil affects fungal spread and species interaction. Progress in this area has long been hampered by a lack of experimental techniques for quantification. In this paper we use X-ray computed tomography to quantify and characterize the pore geometry at microscopic scales (30 μm) that are relevant for fungal spread in soil. We analysed the pore geometry for replicated samples with bulk-densities ranging from 1.2–1.6 g/cm3. The bulk-density of soils significantly affected the total volume, mean pore diameter and connectivity of the pore volume. A previously described fungal growth model comprising a minimal set of physiological processes required to produce a range of phenotypic responses was used to analyse the effect of these geometric descriptors on fungal invasion, and we showed that the degree and rate of fungal invasion was affected mainly by pore volume and pore connectivity. The presented experimental and theoretical framework is a significant first step towards understanding how environmental change and soil management impact on fungal diversity in soils

    Assessment of <i>Miscanthus</i> × <i>giganteus</i> derived biochar as copper and zinc adsorbent:study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification

    Get PDF
    In this work, experimental and modelling investigations were conducted on biochars pyrolyzed at 350 °C and 600 °C, to determine the effect of pyrolysis temperature, hydrogen peroxide activation and pH on copper and zinc removal, in comparison with commercially available activated carbons. Characterization of biochars was performed by BET surface area, elemental analysis and FTIR spectroscopy. Experiments results demonstrated that biochar pyrolyzed at 600 °C adsorbed both copper and zinc more efficiently than biochar pyrolyzed at 350 °C. Chemical activation by H2O2 increased the removal capacity of biochar pyrolyzed at 350 °C. All investigated biochars showed a stronger affinity for copper retention, with a maximum adsorption capacity of 15.7 mg/g while zinc was 10.4 mg/g. The best adsorption performances were obtained at pH 5 and 6. Langmuir adsorption isotherm described copper adsorption process satisfactorily, while zinc adsorption was better described by Freundlich isotherm

    The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis

    Get PDF
    Entomopathogenic nematodes (EPN) are soil-transmitted parasites and their foraging strategies are believed to range from ‘ambush’ to ‘cruise’ foragers. However, research on their behaviour has not considered the natural habitat of these nematodes. We hypothesized that EPN behaviour would be influenced by soil habitat quality and tested this hypothesis using 2 EPN species Steinernema carpocapsae (an ‘ambusher’) and Heterorhabditis megidis (a ‘cruiser’) in 2 contrasting habitats, sand and peat. As predicted from previous studies, in sand most S. carpocapsae remained at the point of application and showed no taxis towards hosts, but in peat S. carpocapsae dispersed much more and showed a highly significant taxis towards hosts. H. megidis dispersed well in both media, but only showed taxis towards hosts in sand. In outdoor mesocosms in which both species were applied, S. carpocapsae outcompeted H. megidis in terms of host finding in peat, whereas the opposite was true in sand. Our data suggest that these 2 EPN may be habitat specialists and highlight the difficulties of studying soil-transmitted parasites in non-soil media

    Effect of multiple episodes of Acute Kidney Injury on mortality:an observational study

    Get PDF
    Background Patients who survive an episode of acute kidney injury (AKI) are more likely to have further episodes of AKI. AKI is associated with increased mortality, with a further increase with recurrent episodes. It is not clear whether this is due to AKI or as a result of other patient characteristics. The aim of this study was to establish whether recurrence of AKI is an independent risk factor for mortality or if excess mortality is explained by other factors. Methods This observational cohort study included adult people from the Tayside region of Scotland, with an episode of AKI between 1 January 2009 and 31 December 2009. AKI was defined using the creatinine-based Kidney Disease: Improving Global Outcomes definition. Associations between recurrent AKI and mortality were examined using a Cox proportional hazards model. Results Survival was worse in the group identified to have recurrent AKI compared with those with a single episode of AKI [hazard ratio = 1.49, 95% confidence interval (CI) 1.37–1.63; P

    Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants

    Get PDF
    Bacteria produce a variety of biosurfactants capable of significantly reducing liquid (aqueous) surface tension (γ) with a range of biological roles and biotechnological uses. In order to determine the lowest achievable surface tension (γMin), we tested a diverse collection of Pseudomonas-like isolates from contaminated soil and activated sludge, and identified those expressing biosurfactants by drop-collapse assay. Liquid surface tension reducing ability was quantitatively determined by tensiometry, with 57 isolates found to significantly lower culture supernatant surface tensions to 24.5 – 49.1 mN m−1. Differences in biosurfactant behaviour determined by foaming, emulsion and oil-displacement assays, was also observed amongst isolates producing surface tensions of 25 – 27 mN m−1, suggesting that a range of structurally-diverse biosurfactants were being expressed. Individual distribution identification (IDI) analysis was used to identify the theoretical probability distribution that best fitted the surface tension data, which predicted a γMin of 24.24 mN m−1. This was in agreement with predictions based on earlier work of published mixed–bacterial spp. data, suggesting a fundamental limit to the ability of bacterial biosurfactants to reduce surface tensions in aqueous systems. This implies a biological restriction on the synthesis and export of these agents or a physical-chemical restriction on their functioning once produced

    Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales

    Get PDF
    To address a number of issues of great societal concern at the moment, like the sequestration of carbon, information is direly needed about interactions between soil architecture and microbial dynamics. Unfortunately, soils are extremely complex, heterogeneous systems comprising highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of inhabiting microbiota. Data remain scarce on the influence of soil physical parameters characterizing the pore space on the distribution and diversity of bacteria. In this context, the objective of the research described in this article was to develop a method where X-ray microtomography, to characterize the soil architecture, is combined with fluorescence microscopy to visualize and quantify bacterial distributions in resin-impregnated soil sections. The influence of pore geometry (at a resolution of 13.4 μm) on the distribution of Pseudomonas fluorescens was analysed at macro- (5.2 mm × 5.2 mm), meso- (1 mm × 1 mm) and microscales (0.2 mm × 0.2 mm) based on an experimental setup simulating different soil architectures. The cell density of P. fluorescens was 5.59 x 107(SE 2.6 x 106) cells g−1 soil in 1–2 mm and 5.84 x 107(SE 2.4 x 106) cells g−1 in 2–4 mm size aggregates soil. Solid-pore interfaces influenced bacterial distribution at micro- and macroscale, whereas the effect of soil porosity on bacterial distribution varied according to three observation scales in different soil architectures. The influence of soil porosity on the distribution of bacteria in different soil architectures was observed mainly at the macroscale, relative to micro- and mesoscales. Experimental data suggest that the effect of pore geometry on the distribution of bacteria varied with the spatial scale, thus highlighting the need to consider an “appropriate spatial scale” to understand the factors that regulate the distribution of microbial communities in soils. The results obtained to date also indicate that the proposed method is a significant step towards a full mechanistic understanding of microbial dynamics in structured soils

    Decay estimates for a viscous Hamilton-Jacobi equation with homogenious Dirichlet boundary conditions

    Get PDF
    20 pagesInternational audienceGlobal classical solutions to the viscous Hamilton-Jacobi equation with homogenious Dirichlet boundary conditions are shown to converge to zero at the same speed as the linear heat semigroup when p > 1. For p = 1, an exponential decay to zero is also obtained in one space dimension but the rate depends on a and differs from that of the linear heat equation. Finally, if 0 < p < 1 and a < 0, finite time extinction occurs for non-negative solutions

    Reverse engineering of biochar

    Get PDF
    This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios
    corecore