2,711 research outputs found

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Evaluation of a global soil moisture product from finer spatial resolution sar data and ground measurements at Irish sites

    Get PDF
    In the framework of the European Space Agency Climate Change Initiative, a global, almost daily, soil moisture (SM) product is being developed from passive and active satellite microwave sensors, at a coarse spatial resolution. This study contributes to its validation by using finer spatial resolution ASAR Wide Swath and in situ soil moisture data taken over three sites in Ireland, from 2007 to 2009. This is the first time a comparison has been carried out between three sets of independent observations from different sensors at very different spatial resolutions for such a long time series. Furthermore, the SM spatial distribution has been investigated at the ASAR scale within each Essential Climate Variable (ECV) pixel, without adopting any particular model or using a densely distributed network of in situ stations. This approach facilitated an understanding of the extent to which geophysical factors, such as soil texture, terrain composition and altitude, affect the retrieved ECV SM product values in temperate grasslands. Temporal and spatial variability analysis provided high levels of correlation (p < 0.025) and low errors between the three datasets, leading to confidence in the new ECV SM global product, despite limitations in its ability to track the driest and wettest conditions

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data

    Get PDF
    This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible, while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images

    Biomass Retrieval Algorithm Based on P-band BioSAR Experiments of Boreal Forest

    Get PDF
    A new biomass retrieval algorithm based on P-band multi-polarization backscatter has been developed and evaluated based on SAR and ground data over boreal forest. SAR data collections were conducted on three dates at a test site in southern Sweden (Remningstorp, biomass < 300 tons/ha; late winter to early summer 2007) and on a single date at a test site in northern Sweden (Krycklan, biomass < 200 tons/ha; fall 2008). The retrieval algorithm is a multiple linear regression model including the HV-polarized backscatter coefficient, the VV/HH backscatter ratio and the ground slope. Regression coefficients were determined from Krycklan data followed by algorithm evaluation using Remningstorp data. The results from the latter show that RMS errors vary in the range 29-42 tons/ha depending on date and stand type. The new algorithm is also compared with alternative algorithms and found to give significantly better performance. The developed model is a significant step towards an algorithm which gives consistent results across multiple sites and dates, i.e. when forest structure, topography and moisture conditions is expected to vary

    An evaluation of the ALOS PALSAR L-band backscatter—Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure

    Get PDF
    Focusing on woody vegetation in Queensland, Australia, the study aimed to establish whether the relationship between Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) HH and HV backscattering coefficients and above ground biomass (AGB) was consistent within and between structural formations (forests, woodlands and open woodlands, including scrub). Across these formations, 2781 plot-based measurements (from 1139 sites) of tree diameters by species were collated, from which AGB was estimated using generic allometric equations. For Queensland, PALSAR fine beam dual (FBD) 50 m strip data for 2007 were provided through the Japanese Space Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) Initiative, with up to 3 acquisitions available for each Reference System for Planning (RSP) paths. When individual strips acquired over Queensland were combined, ‘banding’ was evident within the resulting mosaics, with this attributed to enhanced L-band backscatter following rainfall events in some areas. Reference to Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data indicated that strips with enhanced L-band backscatter corresponded to areas with increased effective vegetation water content kg m and, to a lesser extent, soil moisture g cm . Regardless of moisture conditions, L-band HV topographically normalized backscattering intensities backscatter increased asymptotically with AGB, with the saturation level being greatest for forests and least for open woodlands. However, under conditions of relative maximum surface moisture, L-band HV and HH was enhanced by as much as 2.5 and 4.0 dB respectively, particularly for forests of lower AGB, with this resulting in an overall reduction in dynamic range. The saturation level also reduced at L-band HH for forests and woodlands but remained similar for open woodlands. Differences in the rate of increase in both L-band HH and HV with AGB were observed between forests and the woodland categories (for both relatively wet and dry conditions) with these attributed, in part, to differences in the size class distribution and stem density between non-remnant (secondary) forests and remnant woodlands of lower AGB. The study concludes that PALSAR data acquired when surface moisture and rainfall are minimal allow better estimation of the AGB of woody vegetation and that retrieval algorithms ideally need to consider differences in surface moisture conditions and vegetation structure

    Soil moisture estimation of eucalyptus forests in Portugal with l-band SAR using polarimetric - Decompositions and machine learning

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesSoil moisture is a critical ecological parameter because it is a primary input for all processes that involve the complex interaction between land surface and the atmosphere. Remote sensing, especially using microwaves, has shown great promise in measuring soil moisturewith several operating satellites focused on its continuous estimation and monitoring on a global scale. Portugal is predominantly characterized by Mediterranean and semi-arid climates that feature low and sporadic precipitation. Over 10% of Portugal’s land area has been planted with Eucalyptus globulus- a non-native, fast-growing tree primarily planted for industrial use. Some studies have demonstrated that eucalyptus plantations adversely affect water availability, but overall results have been inconclusive as there are numerous other confounding variables. The goals of this study were to determine, using fully polarimetric L-band SAR and machine learning, if soil moisture could be accurately predicted in eucalyptus forests, and if there is a significant difference in soil moisture inside eucalyptus forests relative to other forests. Vegetated surfaces complicate the estimation of soil moisture because their structure and water content contribute significantly to backscatter of the radar signal. Thus, four polarimetric decompositions were compared to separate vegetative versus surface backscatter. The inputs from those decompositions, as well as several additional radar indices and polarizations from the microwave images, were used as feature inputs into two different machine learning models. After a feature selection process, the soil moisture estimations were retrieved and compared using cross-validation. The best overall soil moisture retrieval for Eucalyptus forests came from Random Forest with a RMSE of 0.021, a MAE of 0.017, and a MBE of 0.001. Through a statistical t-test, predicted soil moisture values in eucalyptus forests did not differ significantly as compared to other forest types in the study area

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches

    Get PDF
    Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity conservation and agricultural management. For regions with persistent cloud cover the use of multi-temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date inventories of grasslands. This is even more appealing considering the data that will be available from upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively underused Extremely Randomised Trees (ERT) is evaluated for discriminating between grassland types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to classify different types of grasslands. Overall accuracies ≥ 88.7% (with kappa coefficient of 0.87) were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier outperforms SVM and RF
    corecore