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Abstract—A soil moisture estimation method was developed for 

Sentinel-1 Synthetic Aperture Radar (SAR) Ground Range 

Detected High resolution (GRDH) data to analyze moisture 

conditions in a gently undulating and heterogeneous subarctic 5 

area containing forests, wetlands, and open orographic tundra. In 

order to preserve the original 10 m pixel spacing, PIMSAR (pixel-

based multi-temporal nonlocal averaging) non-local mean filtering 

was applied. It was guided by multi-temporal statistics of SAR 

images in the area. Gradient Boosted Trees (GBT) machine 10 

learning method was used for the soil moisture algorithm 

development. Discrete and continuous in situ soil moisture values 

were used for training and validation of the algorithm. For surface 

soil moisture, the root mean square error (RMSE) of the method 

was 6.5% and 8.8% for morning and evening images, respectively. 15 

The corresponding maximum errors were 34.1% and 33.8%. The 

pixelwise sensitivity to the training set and method choice was 

estimated as the variance of the soil moisture values derived using 

the algorithms for the three best methods with respect to the 

criteria: smallest maximum error, smallest RMSE value and 20 

highest coefficient of determination (R2) value. It was on the 

average 6.3% with a standard deviation of 5.7%. Our approach 

successfully produced instantaneous high-resolution soil moisture 

estimates on daily basis for subarctic landscape, and can further 

be applied to various hydrological, biogeochemical and 25 

management purposes.  

Index Terms—Synthetic aperture radar, non-local mean 

filtering, temporal classification, soil moisture, machine learning.  
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I. INTRODUCTION 

OIL moisture retrieval has been one of the main topics of 30 

synthetic aperture radar (SAR) research for decades [1] 

[2][3]. The emphasis has long been on bare soil [4][5][6], and 

agricultural land in general [7], but recently also uncultivated 

land types have been studied [8][9][10]. However, SAR data is 

less applied and tested in forested areas, and in mosaic 35 

landscapes of subarctic regions with forest, wetlands, and open 

tundra. The small penetration depth of the SAR signal in C-

band in high vegetation has been a limiting factor for soil 

moisture estimation in forests [11]. High correlation between 

backscatter and soil moisture at catchment scale but reduced 40 

correlation at more detailed scales has been observed in several 

studies [12][13][3]. Current operational global products 

covering all kinds of land cover types utilizing Sentinel-1 SAR 

(S1) are provided in 1 km spatial resolution [2][11][14] and a 

new method for soil moisture retrieval in 500 m resolution has 45 

been presented recently [15]. The aim is at reaching the spatial 

resolution 0.1 km operationally [2] [11].  

The soil moisture retrieval applying S1 is currently actively 

studied in diverse resolutions and ecosystem types [16][17][18] 

[19][20][21][14][22][7][15][23][24][25][26][27][28][29][30]. 50 

The methods used have a wide variation. Change detection 

algorithms are based on the backscattering coefficient 
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dynamical variation between wet and dry conditions 

[9][14][15][17][19]. Inversion of bare soil and (when needed) 

vegetation backscattering models is another approach 55 

[6][20][21][26]. Polarimetry is also used [22]. However, the 

retrieval of soil parameters from radar measurements is an ill-

posed problem because more than one combination of soil 

moisture, soil roughness and vegetation properties can lead to 

the same electromagnetic response [18]. Hence, the use of 60 

diverse machine learning methods is becoming more common 

in soil moisture retrieval [1][18][27][28][29][30].  

Thermal infrared temperature has also shown to be useful for 

forested area soil moisture estimation using Artificial Neural 

Networks (ANN) [24]. Optical image-based normalized 65 

difference vegetation index, which is related to leaf area index 

(LAI) for low vegetation, has been shown to improve the soil 

moisture estimation accuracy [8][25], either applying the water 

cloud model or support vector regression (SVR). In the 

presence of high vegetation, optical imagery and laser scanner 70 

data have been used for analyzing the contribution of vegetation 

to the backscattered signal [9]. LAI retrieval of the canopy has 

been shown to be successful using the backscattering ratio of 

vertical and horizontal polarizations VV/HH [31]. 

Unfortunately, S1 does not provide this ratio. Instead, the 75 

backscattering coefficients of VV and VH polarizations are 

simultaneously available in S1 data.  

The main goal of this study is to obtain spatially and 

temporally very high resolution (10 m pixel spacing, 

instantaneous daily) soil moisture maps to scale field-based soil 80 

methane (CH4) flux measurements to a larger area. The area of 

interest is spatially heterogenous in terms of land cover and 

topography. There is a high need to better understand the role 

of very different surface types in landscape-scale methane 

budget and especially the role of the upland soils in CH4 budget 85 

[32]. It is known that in wet enough conditions upland soils can 

act as CH4 sources, but the interesting question is what kind of 

spatial and temporal variation in CH4 exchange can be 

expected. Within a single catchment there can be surfaces or 

patches with high CH4 emission and those with an order of 90 

magnitude lower CH4 sink, controlled mainly by soil moisture 

[33]. Hence, normal spatial averaging or Lee filtering [8] to 

reduce speckle is not applicable. Previously, we have studied 

midsummer soil moisture patterns and related methane fluxes 

with a combination of SAR, optical and topographic data for 95 

this region, [34]. However, spatiotemporal changes in soil 

moisture were not assessed. In this paper, soil moisture maps 

including temporal variation are produced for the larger study 

area, and these maps will later be used in hydrological and 

dynamic methane models developed for the region.  100 

Non-local despeckling can be used to develop high spatial 

and temporal resolution soil moisture maps. It has been a topic 

of active research since the first introduction of the principle of 

non-local averaging since 2009 [35]. The main challenge of the 

method is, how to choose the pixels to be averaged non-locally 105 

[36][37]. One possibility is to leverage information drawn from 

co-registered optical imagery [38]. This is not always possible, 

when the focus is on analyzing quick changes in the 

environment, as the area of interest may be cloudy, or the sun 

elevation is too low. Recently, multitemporal non-local 110 

despeckling methods have been developed [39][40], but the aim 

has been more in analyzing homogeneous targets, such as 

houses and cultivated fields. In this study, the non-local 

averaging is guided using SAR data only. The new PIMSAR 

method [41] combines slight spatial averaging (ground range 115 

multilook pixels) and temporal averaging with unsupervised 

classification to derive the guidance for non-local averaging. 

In this study, the reduced simple ratio (RSR)[42][43] derived 

from Sentinel-2 (S2) is used as teaching material for machine 

learning methods to be developed for VV and VH 120 

backscattering for canopy effective LAI estimation. Further on, 

machine learning methods are used also for soil moisture 

retrieval using those S1 based effective LAI estimates and in 

situ soil moisture measurements. The advantage of deriving the 

soil moisture estimation method to be applicable also without 125 

optical data is that soil moisture estimation does not then suffer 

from cloudiness, cloud shadows when the solar zenith angle is 

large, or smoke plumes of forest fires. 

The novelty of this study is that the soil moisture estimation 

method developed for S1 data without need of ancillary optical 130 

data is applicable also to forests in a gently undulating area 

including wetlands and that the resulting soil moisture map 

pixel spacing is as high as 10 m, the spatial resolution being of 

the order of 20 m. In the future it might be possible to produce 

instantaneous soil moisture maps for heterogeneous forested 135 

scenery every day in such high spatial resolution, which would 

open completely new possibilities for environmental and 

forestry applications for S1 data usage. 

II. DATA 

A. Test area 140 

The test area is Pallas in northern Finland, the corner co-

ordinates being 67.9122° N, 24.0586° E and 68.0233° N, 

24.2539° E [Fig. 1][34]. The terrain is partly hilly, the altitude 

varying in the range 260 m – 610 m above sea level. The diffuse 

tree line transition zone is at about 475 ̶ 505 m a.s.l above which 145 

tundra starts [44]. The Norway spruce tree line has advanced 

there during the last 100 years [44]. The long-term (1981–2010) 

annual temperature and precipitation within the area are 1.0°C 

and 521 mm, respectively [45]. In spring, the soil moisture 

maximum in forest precedes the disappearance of snow by one 150 

month, but in tree line it is simultaneous with it [46][47]. 

National Land Survey of Finland provided a digital elevation 

model (DEM) and orthorectified aerial images with a spatial 

resolution of 2 m and 0.5 m, respectively. In addition, a cloud-

free Sentinel-2 (S2) optical image was available on July 28, 155 

2019. The nearest weather station was at Kenttärova (67.99°N, 

24.24°E), where the intensity of precipitation and relative air 

humidity were available at 10 minutes interval.  

B. SAR data 

Sentinel-1 SAR Interferometric Wide (IW) Swath data 160 

available in ground range format (GRDH) in the time range 

May 15 – September 12, 2019, were used for this study, 

altogether 120 images, the only missing day being July 2. The 

data is delivered in 10 m pixel spacing, but the spatial resolution  
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 165 

Fig. 1.  Digital elevation model of the subarctic Pallas test area in northern 

Finland. The contour interval is 50 m. Open water is masked white. The in 

situ soil moisture measurement points are shown as well: red pluses for the 
time series points, purple crosses for the intensive campaign points, blue circle 

for continuous soil moisture measurements at 6 cm depth and dark blue 170 

squares for continuous electric measurements at 20 cm depth. The area is 

roughly 12 km x 9 km. 

is 20 m x 22 m. The data was divided into 12 subsets according 

to polarization, vertical (VV) or cross (VH), swath (IW1, IW2 

or IW3) and pass (ascending or descending, i.e. evening or 175 

morning, respectively). No discrimination between satellites 

S1-A and S1-B was made. The incidence angle ranges for the 

swaths in the test area are given in Table I. The preprocessing 

steps of all GRDH images were: 1) applying precise orbit files, 

2) radiometric calibration, nearest neighbor terrain correction 180 

applying the DEM and 3) extracting the subset covering the test 

area. 

 
TABLE I 

INCIDENCE ANGLE RANGE IN THE STUDIED AREA 185 

Swath Pass 
Minimum incidence 

angle 

 Maximum incidence 

angle 

IW1 Morning 33.8°  34.4° 

 Evening 33.2°  33.8° 
IW2 Morning 39.1°  39.6° 

 Evening 38.6°  39.0° 

IW3 Morning 43.8°  44.3° 
 Evening 43.4°  43.8° 

C. Tree and field layer data 

Biomass and LAI of Norway spruce (Picea abies), Scots pine 

(Pinus sylvestris) and Downy birch (Betula pubescens) and 

other deciduous species were available for 131 plots in the test 

area [34]. The LAI values were calculated using measured tree 190 

height and diameter values [48][49]. The total biomass and LAI 

values for coniferous and deciduous species and all trees were 

determined as well [Table II]. In addition, biomass and LAI of 

the ground and field layer vegetation were determined [Table 

III].  195 

The coefficient of determination for the correlation between 

canopy biomass and LAI was 0.85, but it was dominated by the 

smallest LAI values. When only LAI values exceeding unity 

were taken into account, the R2 values was only 0.74. The 

biomass and LAI values of that vegetation did not manifest any 200 

correlation. 

 
TABLE II 

FOREST PARAMETER STATISTICS OF 131 PLOTS[34] 

Parameter Species Median Mean Maximum 

Biomass [kg/m2] Spruce 0.86 2.9 24.0 

Birch 0 1.0 10.1 
Pine 0 1.0 14.7 

Other deciduous tree species 0 0.09 4.8 

Coniferous 1.9 3.9 24.0 
Deciduous 0.03 1.1 10.1 

Total tree 3.4 5.1 24.0 

LAI Spruce 0.88 1.8 11.7 
 Birch 0 0.6 6.9 

 Pine 0 0.4 4.5 

 Other deciduous tree species 0 0.1 2.6 
 Coniferous 1.38 2.1 11.7 

 Deciduous 0.04 0.7 6.9 

 Total tree 2.2 2.8 11.8 

     

TABLE III 205 

UNDERGROWTH VEGETATION STATISTICS OF 131 PLOTS [34] 

Parameter Species Median Mean Maximum 

Biomass [g/m2] Evergreen shrub 39.7 57.9 212 
Deciduous shrub 61.1 65.3 211 

Forb 1.0 11.3 151 

Graminoid 16.6 23.1 103 
Moss 490 438 610 

Ground and field total 633 595 781 

LAI Evergreen shrub 0.17 0.23 0.81 

 Deciduous shrub 0.37 0.40 1.4 
 Forb 0.03 0.18 2.4 

 Graminoid 0.17 0.27 1.4 

 Field layer total 1.0 1.2 3.4 

 

D. Soil moisture data 

Discrete volumetric soil moisture values were measured 

approximately every two weeks in several places at the surface 210 

and 10 cm, 20 cm, 30 cm, and 40 cm below the surface using 

WET-2 and PR2 Profile Probe sensors with an HH2 readout 

unit (Delta-T Devices Ltd). [34]. In addition, the water level 

depth was measured bi-weekly as well. The value of each point 

was based on three individual measurements within an area 215 

having a radius of 5 m, so that the three retrievals were typically 

within one pixel. Hence, the mean values of the triplets were 

used in the method retrieval. The discrete soil moisture time 

series was measured during May 28, 2019 – September 11, 

2019, in 23 points [Table IV, Fig. 1, Fig. 2]. The correlation 220 

between the surface soil moisture and the soil moisture 

measured at various depths decreased with increasing depth, the 

coefficients of determination (R2) being 0.61 (at 10 cm), 0.40 

(at 20 cm), 0.32 (at 30 cm) and 0.26 (at 40 cm). The surface soil 

moisture was negatively correlated with the water level 225 

N 
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Fig. 2.  Relative distributions of the soil moisture measured at the surface at 

discrete times and continuously and at 20 cm depth continuously. 

 

depth, the R2 value being 0.54. Besides the time series, 230 

surface soil moisture was measured in 64 additional points with 

WET-2 sensor, Delta-T Devices Ltd, Cambridge, UK, during 

the intensive campaign carried out on July 3, 2019 – July 13, 

2019 [34]. Hence, the intensive campaign provides more 

information about the spatial variation of the surface soil 235 

moisture and the times series about the temporal variation.  

Continuous soil moisture measurement data at 6 cm depth 

using soil scout sensors (Soil Scout Oy)  were available in the 

test area with an interval of 15 – 19 min [Table V, Fig. 2]. These 

values were taken to directly represent surface soil moisture. 240 

In addition, continuous soil moisture estimates at depths 20 

cm, 40 cm and 60 cm based on electric measurement (EM)  

using the CS616 and CS650 Soil moisture probes by Campbell 

Scientific [50] were available in the test area with an interval of 

30 minutes [Table VI, Fig. 2]. Values up to 100% were used in 245 

the machine learning training to cover the whole dynamic 

range, but only values smaller than 100% were included in the 

later analysis to remove actual liquid water cases from the soil 

moisture data. As the continuous measurements do not provide 

the soil moisture at the surface, a linear regression relationship 250 

(sm0 = 10.4  exp(0.0254  sm20) was derived between measured 

soil moisture values at the surface sm0 and at 20 cm depth sm20 

for the 425 points available simultaneously in the discrete data.  

 
TABLE IV 255 

DISCRETE IN SITU SOIL MOISTURE [%] AND WATER LEVEL [CM] STATISTICS. 

THE NUMBER OF INDIVIDUAL MEASURED VALUES IS n. 

Data set Parameter n Minimum Mean Maximum 

Time 
series 

Surface 678 0.6 49.3 92.3 
10 cm depth 425 0.7 32.5 62.5 

20 cm depth 425 8 46.1 74.4 

30 cm depth 425 9 50.0 84.5 

40 cm depth 424 20.2 54.7 92.8 

Water level 354 0 18.5 71 

Intensive 
campaign Surface 

 
195 1.3 

 
26.7 

 
91.6 

 

TABLE V 
CONTINUOUS SURFACE (6 CM DEPTH) SOIL MOISTURE [%] STATISTICS. THE 260 

NUMBER OF INDIVIDUAL MEASURED VALUES IS n. 

Point Latitude Longitude n Min Mean Max 

S3 67.98703°N 24.24193°E 7838 19 25.3 32 

S13 67.98707°N 24.24238°E 7869 15 25.4 56 
S17 67.98704°N 24.24193°E 7777 19 21.9 44 

S19 67.98705°N 24.24238°E 7880 19 23.0 37 

 

TABLE VI 

CONTINUOUS SOIL MOISTURE [%] STATISTICS FROM ELECTRIC 

MEASUREMENTS. THE NUMBER OF INDIVIDUAL MEASURED VALUES IS n. 265 

Point Latitude Longitude n 
Depth 
[cm] 

Min Mean Max 

GC4 67.970°N 24.095°E 5808 20 14.1 19,6 42.9 

    40 16.3 20.8 36.7 

    60 17.6 21.4 35.5 
GC7 67.967°N 24.083°E 5808 20 13.1 20.4 55.0 

    40 17.5 24.2 12.7 

    60 13.4 17.6 31.2 
GC8 67.988°N 24.115°E 5808 20 32.8 39.7 53.6 

    40 9.7 12.7 22.1 

    60 7.2 9.0 14.1 
Well 68.001°N 24.124°E 3874 20 71.4 79.1 100 

    40 78.7 84.8 100 

    60 54.1 56.6 64.1 

 

The relationship is rather vague (R² = 0.34 and the root mean 

square error is 8.3%), but it was used to convert the EM-based 

soil moisture data set from 20 cm depth to the surface, in order 

to get more extensive spatial coverage and wider land cover 270 

type range for the continuous surface soil moisture data set to 

be used for deriving the estimation algorithm. 

E. Sensitivity of backscattering to soil moisture and LAIeff 

In principle the backscattering coefficient increases with 

increasing soil moisture and LAIeff. However, in the hilly terrain 275 

of the study area the backscattered intensity is strongly related 

also to the local incidence and azimuth angles. Thus, the 

relationship between the soil moisture, LAIeff and backscattering 

coefficient is not so simple [Fig. 3]. Although the high soil 

moisture values are common at the high end of a certain LAIeff 280 

value, also opposite behavior appears. Hence, in an area like 

this a simple algorithm for soil moisture retrieval is not to be 

found. 

 

 285 
Fig. 3.  The VH backscattering coefficient vs. LAIeff for the morning images 

and the discrete soil moisture measurement points. The soil moisture is 

indicated by the darkness of the points. 

III. METHODS 

To preserve the high spatial resolution of the GRDH SAR 290 

images and cope with the speckle, a recently developed non-

local averaging method PIMSAR [41] was applied to each 

image. For that purpose, the images were first divided into 30 

classes based on multitemporal mean and standard deviation 

values. In each class, the backscattering neighbor locations 295 

were sought by sorting the multitemporal mean values of the  
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(a)            (b) 

 
(c)                                           (d) 300 

Fig. 4.  The non-locally averaged VH backscattering coefficient of the S1 

GRDH images of June 21 (a) and June 22 (b), 2019. The swath is IW3 and the 
passes are descending (morning) and ascending (evening), respectively. The 

magnitude increases from white to black to show forests dark and open areas 

bright. Open water is masked white. The corresponding images for VV 305 

polarization are shown in (c) and (d). The area is roughly 12 km x 9 km. 

class. Indices of 49 pixels closest to each other in the 

multitemporal mean were stored for each pixel in a guidance 

matrix per pass and swath. The same guidance matrix was used 

for all images of the same pass and swath to derive the non-310 

locally filtered images. PIMSAR preserves the image mean 

value with the high accuracy (better than 0.02% for each 

image). Details of the PIMSAR method are described in [41].  

Examples of non-locally averaged morning and evening VH 

and VV images are shown in Fig. 4. The hilly topography 315 

causes obvious shading in different parts in the morning and 

evening images, so the soil moisture algorithm has to be derived 

for morning and evening images separately.  

Examples of subareas of original and PIMSAR filtered 

images are shown in Fig. 5 and Fig. 6 for the highest and lowest 320 

mean image intensity cases for VH and VV polarizations. 

Notably, the highest intensity occurs on the same day 

(September 12), whereas the lowest intensity appears in the VH 

images on August 7 and in the VV images on May 15. 

PIMSAR is able to produce a high spatial structure, which is 325 

completely blurred in the original images and their spatial 

averages. Even a narrow forest road (roughly 3 m wide without 

nourishings) is visible although the pixel spacing is 10 m.  

 

330 

 
Fig. 5. Subarea of the S1 VH image for the lowest (top) and highest (bottom) 
image mean backscattering values. The original images are to the left and the 

non-locally filtered images to the right. The area covered is 4 km x 3 km. 

335 

 
Fig. 6. Subarea of the S1 VV image for the lowest (top) and highest (bottom) 
image mean backscattering values. The original images are to the left and the 

non-locally filtered images to the right. The area covered is 4 km x 3 km. 

N N 

N N 

N 

N 

N 

N 
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The relationship between backscattering, leaf area index and 340 

soil moisture is briefly described in Section IIIII.EA using a 

water cloud with gaps approach. The effective LAI (LAIeff) map 

based on the SAR images was derived using the random forest 

[51][52] machine learning method trained with the LAIeff map 

obtained using the RSR index derived from the S2 image 345 

(Section IIIB). Then the relationship between soil moisture and 

backscattering was obtained using machine learning methods 

(Section II.EC) trained with in situ soil moisture measurements 

[Fig. 7]. 

 350 

 

 
Fig. 7. The flowchart of the soil moisture method retrieval. The machine 

learning steps are indicated with gray shade. The random picking of the discrete 

and continuous training points is carried out 2000 times. The number of 355 

discretely and continuously measured points is roughly the same. 

A. Ground contribution to backscattering 

The total backscattering of the vegetated area 0 can be 

described with a water cloud with gaps [7][53][54][55]  

 360 

𝜎0 = (1 − )𝜎𝑔𝑟
0 +  𝜏𝑐𝑎𝑛

2 𝜎𝑔𝑟
0 +  𝜎𝑐𝑎𝑛

0 (1 − 𝜏𝑐𝑎𝑛
2 ) (1) 

 

where  denotes the canopy cover, gr
0 and can

0 are the 

backscattering contributions of the ground and canopy,  

respectively. The transmissivity of the canopy can is related to 365 

the number of scatterers n per unit area and, each having the 

area A and thickness h, so that the volume of a single scatterer 

is V = A h. The amount of water of one scatterer is denoted by 

Wv (kg/m3). The total amount of water per unit area in the 

canopy, i.e. the canopy water content mv (kg/m2), is then 370 

n Wv A h. Typically the canopy water content is taken to be 

related to the stem volume, especially when using longer 

wavelengths. In C band, however, also leaves contribute to 

scattering markedly, as their dimensions is comparable to the 

wavelength [58][59][60]. The branches of the dominating 375 

species of the area, the northern Norway spruce (‘candle 

spruce’), are so small and hidden behind the shoots that their 

contribution in C band is not significant [61]. The question, 

whether the leaves (needles) or trunks dominate can be checked 

from the SAR data. 380 

If the trunk-ground double bounce mechanism were the 

dominating scattering mechanism, the topography would 

reduce it so that the slopes facing the radar would produce 

weaker backscattering than flat areas, since the double bounce 

would not be directed to the radar due to the sloped terrain [Fig. 385 

8]. However, the backscattering images do not show this kind 

of behavior. Hence, the trunk-ground double bounce 

backscattering is not the dominant scattering component in the 

area studied and the leaves (needles) appear to be the 

dominating scattering component from the canopy. 390 

Consequently, it is reasonable to characterize the canopy with 

LAI, not biomass.   

The leaf area index LAI equals nA. Hence, the total amount 

of water in the canopy layer can be described by mv = WvLAIh. 

The canopy transmissivity is then exponentially decaying with 395 

the amount of water per unit area and can be given in the form 

 

𝜏𝑐𝑎𝑛 = exp(−𝐵𝑚𝑣/ cos 𝜃) = exp(−𝐵𝑊𝑣𝐿𝐴𝐼 ℎ/ cos 𝜃)  (2) 

 

where  is the incidence angle of the microwave radiation and 400 

and B is a coefficient related to the canopy structure. For 

coniferous canopies, the true hemi-surface LAI is about 1.5 

times the effective LAI [56][57]. One should also notice that 

both optical and microwave remote sensing LAI estimates may 

saturate at large LAI values, because the transmissivity is then 405 

negligible. As the leaves are taken to have identical thickness, 

the above equation can be simplified to the form 

 

𝜏𝑐𝑎𝑛 = exp(−𝐵′𝑊𝑣𝐿𝐴𝐼𝑒𝑓𝑓/ cos 𝜃)          (2) 

 410 

Analogically, the backscattering coefficient of the canopy is  

 

𝜎𝑐𝑎𝑛
0 = 𝐴𝑚𝑣 cos 𝜃 = 𝐴′𝑊𝑣𝐿𝐴𝐼𝑒𝑓𝑓 cos 𝜃          (3) 

 

where A’ is a parameter related to the structure of the canopy. 415 

Because many individual SAR images taken in varying 

moisture conditions of the vegetation are used, the parameter 

Wv is explicitly shown both in the description of the 

backscattering and transmission of the vegetation. 

 420 

 
Fig. 8. Schematic view of reduced trunk-ground double bounce backscattering 

of sloped terrain (right) compared to flat terrain (left). 
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Although LAIeff can be estimated and  is known for each 

pixel and , A and B can be assumed to be constant during July 425 

15 – August 31, there are still too many unknowns per pixel to 

derive the soil backscattering coefficient in a deterministic way. 

However, this analysis gives motivation for providing the 

machine learning method with LAIeff. In addition, the low 

biomass [Table II][59] and sparse structure of the subarctic 430 

forests studied [62] support the view that soil  moisture retrieval 

is possible using S1 data. 

B. Effective LAI retrieval 

For boreal forest, the reduced simple ratio (RSR) index suits 

for the canopy LAIeff estimation using the S2 image [42]. We 435 

use the relationship LAIeff = 0.25RSR + 0.27 [43]. 

The SAR based LAIeff estimation method was derived for the 

images June 26 – August 7, because then the LAI can be 

assumed to be about constant. As HH polarization was not 

available in the S1 data, a previously developed LAI retrieval 440 

method based on the VV/HH polarization ratio sensitivity to 

shoot orientation could not be applied [31]. On the other hand, 

the temporally averaged VH and VV polarization 

backscattering coefficients of single swaths showed only weak 

correlation with the S2 image based LAIeff  and saturated at 445 

about LAIeff =1.3. To benefit from the availability of data from 

all three swaths, it was decided to derive a machine learning 

method for LAIeff estimation using S1 data. 

After removing open water areas and a cloud containing 

square from the S2 based LAIeff image, there were 996897 pixels 450 

for machine learning training and validation. The LAIeff 

distribution showed that a vast majority of the values were in 

the range of 0.99 – 1.35, which cover the percentiles from 0.2 

to 0.95. In order to avoid their dominance in training the LAIeff 

method, the trainset was chosen so that all values below 0.99 455 

(20%) and above 1.35 (5%) were included in it. For every 

increment of 0.02 between the limit values 0.99 and 1.35, every 

1600th value in order of magnitude was included. The total 

number of pixels in the trainset was then 484799. All of the 

smallest 20% and largest 5% LAIeff values were taken in the 460 

training set to optimize the algorithm for the area in question. If 

a more general algorithm had been the objective, one would 

have left half of the smallest and largest values in the validation 

set. 

The predictors used for the SAR based LAIeff algorithm were 465 

the non-locally averaged backscattering coefficients of each 

swath and pass normalized with the respective average value of 

the land area in the same image, i.e. 12 individual values per 

one LAIeff pixel. The normalization was adopted to avoid the 

effect of varying moisture conditions. No topography related 470 

parameters were used as predictors because the effect of 

topography is very complex for high vegetation. 

The training was first tested using several methods: decision 

tree, gradient boosted trees, linear regression, nearest 

neighbors, neural network, random forest, and Gaussian 475 

process. The random forest approach [51][52] produced the best 

results with respect to standard deviation; therefore, it was 

chosen for the LAIeff estimation. The derived algorithm was then 

applied to the average of individual non-locally averaged S1 

images in the time range June 26 – August 7 to produce the 480 

LAIeff map for the soil moisture retrieval. 

C. Soil moisture retrieval 

The boreal forest floor is mostly covered with field and 

ground layer vegetation including moss and shrub species. In 

addition, the wetland areas of the test site are also vegetated by 485 

shrubs, sedges, and mosses [34]. Hence, the ground 

backscattering coefficient is a complex combination of soil and 

low/high vegetation contributions. Therefore, the 

backscattering models for bare soil [4][5][20][22][24] were not 

used for the ground backscattering estimation in this study. 490 

Instead, an empirical relationship with the backscattering 

components and the soil moisture was sought on the basis of in 

situ soil moisture data and machine learning methods.  

Due to the field and ground layer vegetation of the boreal 

forest, the backscattered signal does not trivially depend on the 495 

penetration depth in the soil layer [64], but may reveal soil 

moisture to which the surface vegetation reacts. Hence, it may 

be possible to relate the radar signal to soil moisture beneath the 

actual surface level. 

A challenge in using the in situ soil moisture data set is that 500 

the continuous measurements provide a much larger data set 

than the spatially distributed discrete measurements. In 

addition, soil moisture has a quite marked temporal 

autocorrelation, so that the individual values of continuous 

measurements are not completely independent. Another 505 

complication is that part of the continuous measurements were 

converted from the values measured at 20 cm depth to the 

surface soil moisture. Naturally, their somewhat reduced 

quality will cause some inaccuracy in the surface soil moisture 

method retrieval. 510 

The following values per pixel were paid attention to in 

picking the points for the machine learning training set at the 

time of satellite overpasses: 1) surface soil moisture, 2) 

day/time of soil moisture measurements, 3) altitude of terrain, 

3) local slope angle of terrain l, 4) local aspect angle of terrain 515 

l, 5) class (see Section II.E), 6) local incidence angle , 7) 

azimuth difference of radar looking direction  and terrain 

slope, 8) LAIeff based on S1 data, 9) cos() of S1 data, 10) time 

difference between the soil moisture measurement and SAR 

image acquisition, 11) VH
0, 12) VV

0, 13) <VH
0>land and 14) 520 

<VV
0>land. Here <VH

0>land and <VV
0>land denote the average 

values of VH
0 and VV

0 of land pixels of each image. 

In principle, one could use all available information 

(numbers 2 – 14 of the previous list) to predict the surface soil 

moisture (number 1). However, then the machine learning 525 

method might find solutions that are actually just typical soil 

moisture values related to altitude and land cover class or 

certain day, for example, and the SAR data would provide just 

noise on top of that. The real test for the suitability of SAR data 

in soil moisture estimation is to provide the machine learning 530 

method no parameters that don’t depend on the SAR. Hence, 

the last nine parameters (numbers 6 – 14 in the list above) were 

used as the training information for the predictor to estimate the 

surface soil moisture (number 1).  

The criteria 6 and 7 take into account the longer path the 535 
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radar signal has to go in the canopy before reaching the forest 

floor due to the terrain topography. The local incidence angle 

was provided for the predictor in the form of cos(l - )sin(l - 

). The reason for the azimuthal weight is that the signal's 

penetration in the canopy in hilly terrain depends largely on 540 

that. The azimuth difference was provided in the form 

tan()sin(l - ) to emphasize that the azimuth difference 

matters more for steep slopes. The radar incidence angle  was 

given individually for each pixel of the image, but the radar 

azimuth angle  was taken to be the same for all pixels of the 545 

pass in question. The criterion 8 (LAIeff) provides the machine 

learning method information related to attenuation in the 

canopy. For bare surfaces taking into account only the local 

incidence angle of the terrain (criterion 6) would be sufficient, 

but for trees this is not the case. The trunks of trees are vertical 550 

also in sloped terrain, hence the crown scattering is dominated 

by the radar incidence angle (criterion 9), but also the local 

incidence angle (criterion 6) may have an effect, since the tree 

line to some extent follows the terrain topography. The time 

between the SAR image acquisition and the in situ soil moisture 555 

value (criterion 10) will help in taking into account the diurnal 

variation of the soil moisture.  

The main criteria for soil moisture retrieval are numbers 11 

and 12 providing the individual backscattering coefficients per 

pixel in the two polarizations available. The average 560 

backscattering values of the images (criteria 13 and 14) are 

provided in addition to the individual pixel backscattering 

coefficients, because possible winter hardening of coniferous 

species shows up in changed backscattering level and 

polarization ratio [62][64]. Then the attenuating effect of the 565 

canopy is markedly reduced, which affects the soil moisture 

retrieval. Providing the information about the general status in 

the area gives a possibility for the machine learning method to 

decide, whether the observed change in single pixel 

backscattering is due to soil moisture change only or possibly 570 

also to winter hardening. 

Although points for the trainset were chosen so that they also 

cover the dynamic range of the timing of the soil moisture 

measurements and the topography related parameters (numbers 

1 – 4 in the list), those parameters were not offered for the 575 

predictor in order to avoid producing information that is not 

observed by the SAR or related to its viewing configuration. 

Including the class information (number 5 in the list) to the 

trainset would have improved the results slightly, but it was 

skipped, because soil moisture measurements were not 580 

provided for all classes.  

The training set was constructed so that it covered the 

dynamic variation range of all previously 14 listed parameters, 

although only 9 of them (all SAR dependent) were used as input 

for the machine learning algorithm. This was done to have good 585 

representativity for the training set. The discrete and 

continuously measured soil moisture values were picked 

separately and their fraction in the training set was roughly 

even, with slight preference of the discrete points. Roughly half 

of the discrete points were picked deterministically and the rest 590 

randomly. The continuously measured values were picked 

similarly in a half-random way. This was done as follows. 

The data to be used for training (i.e. the above mentioned 9 

parameter values per each soil moisture measurement at the 

time of the satellite overpass) was sorted in order of magnitude 595 

separately for each criterion, separately for the discrete and 

continuous measurements. For the discrete data, every 40th 

point was then picked in the order of magnitude of the criterion 

in question to be included in the training set in order to cover 

the dynamic variation of every parameter. In addition, for each 600 

criterion, a random point for every set of successive 41 points 

in the order of magnitude was also included in the training set. 

Possible redundant points (i.e. points picked on the basis of 

more than one criterion) were removed from the training set. 

The number of discrete measurement points in the training set 605 

was about 50% of available points. The continuous dataset was 

treated similarly, but in order to avoid its dominance, only every 

9000th point was picked systematically and random points from 

all sets of 9001 successive sorted points. Possible redundant 

points were removed. The best morning method had 135 610 

discrete and 126 continuously measured soil moisture values, 

the best evening method 131 and 122, respectively. 

The time difference between the S1 image overpass and the 

soil moisture measurement was restricted to the range ± 1 day 

(i.e. [-24 h – 24 h]). Then, all soil moisture values measured at 615 

surface (including the converted ones) were used as training 

material. In addition, the time difference between the soil 

moisture measurement time and the S1 satellite overpass was 

used both as a criterion of picking points for the training set 

(besides the already mentioned criteria) and as an input 620 

parameter for the machine learning method developed. 

First, all the machine learning methods already tested for the 

LAIeff estimation were again tested for soil moisture retrieval for 

a few trainsets. The gradient boosted trees (GBT) method 

produced the best results with respect to standard deviation and 625 

was chosen as the method to be used for the final surface soil 

moisture estimation method retrieval [66][67][68][69][70]. 

This was carried out using 2000 different half-randomly picked 

training sets. The reason for GBT being the best method for the 

soil moisture estimation and the random forest method for the 630 

LAIeff estimation is that GBT is able to provide better estimates 

for a finite variation range (0% ⸻ 100% for soil moisture) than 

random forest, which is otherwise a very good method (fast, 

stable and usually robust to outliers). 

The R2 values, RMSE and maximum errors of the predictor 635 

applied to all data were determined separately for all trainsets, 

the whole material and the validation set, which contained the 

points not included in the training set. The predictor producing 

the smallest maximum error for the whole material was chosen 

to be used. The reason for choosing the minmax norm instead 640 

of the highest R2 or smallest RMSE value was to avoid 

overfitting to the spatially relatively sparsely representative 

material. Separate predictors were derived for the morning and 

evening images due to the hilly topography. The sensitivity of 

the method to the choice of training points and the chosen 645 

method was tested by producing soil moisture maps with three 

best point sets (with respect to minmax, RMSE and R2) and 

calculating the difference of the soil moisture estimated per 
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pixel. 

Machine learning methods may not apply outside the 650 

variation range of the parameter values used for training. In 

addition, major inaccuracy may appear in areas, which are 

geographically essentially different from those included in the 

trainset. Therefore, masks for morning and evening images 

were constructed for areas with possibly unreliable soil 655 

moisture estimates. The criteria checked were: 1) altitude 

(max), 2) terrain slope (max), 3) terrain aspect, 4) class, 5) local 

radar incidence angle, 6) local radar look angle and 7) LAIeff 

(max). It should be noticed that the terrain aspect and local radar 

look angle matter only when the slope is relatively steep. The 660 

limit value of 0.2 was used for the slope to mask using the 

aspect and local look angle. Complications was caused by the 

LAIeff = 0 values at high altitude above the tree line. No soil 

moisture measurements were available there. Yet the area is 

geographically very different from low altitude areas of low 665 

LAIeff values. Hence, an additional criterion of LAIeff = 0 values 

at an altitude higher than 450 m a.s.l. was used for masking 

areas of reduced reliability. 

IV. RESULTS 

The RMSE of the S1 and S2 based LAIeff estimates was 0.10 670 

for the trainsets and 0.14 for all pixels. The relative 80% 

variation range of the S2 based LAIeff estimate was in the whole 

land area 0.84 – 1.31 and the corresponding variation range of 

the S1 based LAIeff estimate was 0.84 – 1.25. Hence, the 

microwave estimate had slightly smaller dynamic variation than 675 

the optical estimate and its mean value of 1.09 was also slightly 

smaller than the S2 based mean value 1.12 [Fig. 9]. However, 

the spatial variation of the LAIeff estimates was quite similar 

[Fig. 10], the microwave estimate having slightly better pixel 

spacing (10 m) than the optical (20 m) due to the lower spatial 680 

resolution of the SWIR channel of S2. 

The soil moisture predictors derived separately for morning 

and evening images are characterized statistically in Table VII 

and Fig. 11. The large difference between the maximum error 

and 90% percentile value suggests that the data contains a small 685 

number of points that deviate largely from the general behavior.  

The relationship between the soil moisture estimation error 

and the parameters 1 – 14 listed in Section III.C revealed that  

 

 690 
Fig. 9. The relative distribution of the S1 and S2 based LAIeff estimates. 

 

 
Fig. 10. LAIeff estimated from the RSR index of the S2 image (left) and using 695 

the random forest method applied to the VH and VV backscattering of the S1 
images (right). Open water and the cloudy square in the S2 image are masked 

white. 

TABLE VII 

STATISTICS FOR THE PREDICTORS OF S1 BASED SURFACE SOIL MOISTURE [%] 700 

ESTIMATION WITHIN ONE DAY OF S1 OVERPASS USING MINMAX NORM. 

Images Parameter Trainset 
Validation 

set 

All 

points 

Morning n 260 34836 35096 

 offset 4.49 1.33 1.45 

 slope 0.90 1.03 1.02 
 R2 0.94 0.87 0.87 

RMSE 5.9 5.7 4.3 

 90% error percentile 8.0 9.0 9.0 
 Max error 34.1 30.5 34.1 

Evening n 253 34375 34627 

 offset 5.1 1.44 1.50 
 slope 0.86 0.98 0.98 

 R2 0.91 0.90 0.90 

 RMSE 6.8 4.6 3.3 
 90% error percentile 10.9 6.8 6.8 

 Max error 33.6 33.9 33.9 

 

there is a slight systematic dependence of the error on the 

Julian day of the soil moisture measurement. The error is more 

typically negative in May and early June. Since that period 705 

coincides with the start of the actual growth season of the 

canopy (and field and ground layer vegetation), the real LAIeff 

is probably lower than the value derived using the summer 

images [Section III.B] and used for the whole period. Then the 

fraction of backscattering due to ground would be larger than 710 

assumed, which would lead to expected soil moisture being 

higher than the actual soil moisture, and thus cause negative 

estimation error. A first-order polynomial was fit to the error 

estimate dependence on the Julian day, but the R2 values were 

very small, 0.03 for morning and 0.04 for evening. Hence, this 715 

systematic error trend is insignificant compared to the general 

estimation accuracy. 

The estimated seasonal variation of soil moisture of the 

discrete measurement points was mostly in the range of the 

measurement variation of the three individual measured values 720 

with an accuracy of the RMSE variation of the estimation 

method. The morning images (Fig. 11, Table VIII) produced 

N N 
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slightly better results than the evening images (RMSE =  6.5, 

R2 = 0.88 for morning and RMSE =  8.8, R2 = 0.77 for evening 

images). Since soil moisture has a strong temporal 725 

autocorrelation, except for the beginning of precipitation 

events, the large continuously measured data sets dominate the 

statistics of the whole data set in Table VII and the RMSE 

values are too small to be representative in general. Hence, the 

statistics of Table VIII is considered to better represent the 730 

quality of the soil moisture maps.  

Although the statistics of the whole data set containing also 

the continuous soil moisture measurements looks about as 

promising for the evening data set as for the morning data set 

[Table VII], the GBT method derived for the morning data set 735 

produced clearly better soil moisture estimates for the time 

series of the spatially distributed discrete in situ points (Table 

VIII, Fig. 12, Supplementary Fig 1). The soil moisture estimates 

derived using the morning images are mostly within the range  

 740 

 

  
 

Fig. 11. The estimated surface soil moisture vs. the measured values for the 

trainset and all data using the algorithm derived for morning images (top) and 745 

evening images (bottom). 

TABLE VIII 

STATISTICS FOR THE PREDICTORS OF S1 BASED SURFACE SOIL MOISTURE [%] 

ESTIMATION WITHIN ONE DAY OF S1 OVERPASS FOR THE TIME SERIES OF THE 

DISCRETE POINTS. 750 

Images Parameter Discrete points 

Morning n 202 

 offset 6.3 
 slope 0.84 

 R2 0.88 

RMSE 6.5 
 90% error percentile 15.3 

 Max error 30.1 

Evening n 165 
 offset 8.2 

 slope 0.80 

 R2 0.77 
 RMSE 8.8 

 90% error percentile 24.2 

 Max error 32.9 

 

 

Fig. 12. Examples of the estimated surface soil moisture vs. the measured in 755 

situ values for the discrete points using the algorithm derived for morning 

images. The gray points show the individual triplet means and the shaded gray 

area the variation of the triplet values. The black points are the estimated values 

derived from the morning images of the same day, i.e. a few hours before the 

in situ values. The black error bars are the RMSE values for the GBT method 760 

derived for the morning images and applied to the discrete points only (Table 

VIII). The points marked with a cross were included in the training set. 

 

of the in situ triplet variation measured during the same day, 

taking into account the RMSE value of the S1 based soil 765 

moisture estimates. For evening images (Table VIII), the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

11 

agreement of the derived soil moisture estimates with the in situ 

measurements of the same day had more scatter.  

The potential of the method for daily soil moisture estimation 

on pixel basis was studied using the continuous surface soil 770 

moisture measurements. Two of the measured points were 

within one S1 pixel, the other two being situated in two 

neighbor pixels. The distance between those four points varied 

in the range 4  ̶  24 m. The estimated soil moisture per day is 

shown in for those three pixels in Fig. 13. Obviously the 775 

variation within the pixel is high and it is not known, for 

example, whether s13 or s19 represents the dominating 

characteristics of the pixel they are in. Although the diurnal 

variation of those points is rather small compared to the soil 

moisture estimation method uncertainty, the estimated values  780 

 

 
Fig. 13. Daily averaged measured soil moisture four three neighbor S1 pixels 785 

(blue) and the variation range (gray band). The individual instantaneous 

measured values are shown in cyan and orange. The variation range of 

corresponding estimated soil moisture values based on morning S1 images and 

the individual in situ measurement times are shown as black vertical lines. The 

variation range is extended by the method overall uncertainty 4.3% [Table VII] 790 

indicated as dotted lines. 

seem to catch the main features of the soil moisture seasonal 

variation. In addition, the difference in soil moisture values of 

neighbor pixels shows also in the estimated values. However, 

also the difference in swaths (successive points) appears 795 

occasionally in the estimated soil moisture curved. Partly this 

suggests that the machine learning method is not completely 

able to hide incidence angle variation related effects. Partly this 

may be a result of not having the same soil moisture variation 

in the training set per swath, as the precipitation events were not 800 

evenly distributed between swaths. 

Only three points of the discrete data were located in 

neighbor pixels during the intensive measurements. A 

comparison of nearby in situ and estimated soil moisture values 

supported the view that the soil moisture can in principle be 805 

estimated on pixel basis, but the number of points 

(Supplementary Fig. 2) is far too small to prove it. 

Altogether 60 instantaneous midday soil moisture maps, one 

per day, were generated using morning images in order to 

perceive the temporal variation of the soil moisture of the whole 810 

area [Supplementary Fig 3]. Examples are shown in Fig. 14.  

 

  

  
(a)           (b) 815 

  

  
(c)            d) 

Fig. 14. Calculated soil moisture map for a) May 21, 2019 and difference 

maps for b) August 12 – May 21, 2019, c) August 13 – 12, 2019 and d) 820 

September 12 – May 21, 2019. All maps are calculated for midday (UTC 10) 
using morning images of S1. Open water and masked areas are white in a), b) 

and c) and black in d). 

N N 

N N 
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(a)           (b) 825 

 
Fig. 15. Mask layers for the soil moisture retrieval using S1 morning data, a) 

morning images and b) evening images. The gray level indicates for how 

many criteria the pixel is masked. 

May 21 is about the time of snowmelt at the tree line and thus 830 

represents an early summer case of high soil moisture. August 

12 was preceded by a dry period of two weeks and the 

difference to the early summer situation is obvious [Fig. 14b]. 

One example of the effect of precipitation on soil moisture is 

shown as a difference between August 13 and August 12 [Fig. 835 

14c]. Autumn soil moisture conditions are clear in the image of 

September 12 [Supplementary Fig. 3], the difference of which 

to the situation of May 21 is shown in Fig. 14d. The masks for 

morning and evening images are shown in Fig. 15. 

The sensitivity of the result to the trainset and method was 840 

studied comparing the soil moisture maps produced using 

morning images and the chosen best minmax method and the 

methods based on lowest RMSE or highest R2 value. The 

difference between the maximum and minimum value of the 

soil moisture estimates produced using the three methods was 845 

used to generate a map of pixelwise sensitivity to the chosen 

trainset and method [Fig. 16]. The corresponding relative 

sensitivity was obtained by dividing the difference of the largest 

and smallest value with the median value [Fig. 16]. The average 

difference was 6.3% with a standard deviation of 5.7%, both 850 

given in absolute soil moisture values. Those values are quite 

in line with the quality statistics of Table VIII. 

V. DISCUSSION 

Our approach successfully produced very high resolution 

(~20 m with 10 m pixel spacing) soil moisture estimates on a 855 

daily scale to a subarctic landscape. Generally, estimates were 

matching with 6.5% - 8.8% RMSE accuracy (in absolute soil 

moisture percentages) and R2 values within 0.8 – 0.9 in all study 

period and was especially good for morning images.  The R2 

values obtained using the whole data sets (0.87 – 0.90) are 860 

probably so high and the RMSE values (3.3% – 4.3%) so small, 

because of the high temporal autocorrelation of the 

continuously measured data, as soil moisture changes abruptly 

only at the beginning of a precipitation event. Hence, we use 

here the higher RMSE and lower R2 values obtained for the 865 

discrete time series points to characterize the accuracy of the  

(a)           (b) 

Fig. 16. The masked difference (in soil moisture%) of June 21, 2019 (a) and 870 

relative difference (b) between the largest and smallest soil moisture estimate 

values derived using the best morning algorithms based on 1) the minmax 

norm, 2) the smallest RMSE and 3) the largest R2 values.  

method. 

Results agreed with previous SAR studies done in other than 875 

agricultural areas, such as Mediterranean [24], Polish wetland 

[8] and subarctic conditions [10], in showing that C band SAR 

data can be used for soil moisture retrieval in diverse 

landscapes. Our approach, benefiting from the completely new 

PIMSAR nonlocal despeckling method [41], is unique and also 880 

produced good estimates in forest areas, which have been 

mostly lacking in previous S1 data using studies [24]. In boreal 

forests one complication is the field and ground layer 

vegetation, which may be quite thick, when the canopy is 

relatively small. However, the field and ground layer vegetation 885 

will reflect the surface soil moisture conditions. In addition, the 

crown shape of northern Norway spruce is very narrow, so that 

a larger fraction of the ground is visible between the trees than 

in southern Finland for the same LAI value. PIMSAR also 

enables retrieval of as accurate (~ 10%) soil moisture maps 890 

without need of optical data in higher spatial resolution (~20 m) 

compared to the previously mentioned three studies: 30 m [24], 

500 m [8] and 100 m [10].  

It was a challenge for the method development that the 

spatially distributed data was not measured at the times of the 895 

satellite overpasses and the continuous measurements were 

available practically only in five locations and in four of them 

the measurements were carried out only at 20 cm depth or 

deeper. In addition, spatially the data set was rather small for 

machine learning method development. Soil moisture values 900 

were available only for less than 0.1% of the land pixels. Yet 

the results are convincing and indicate that it is possible to 

develop a high-resolution soil moisture retrieval method that 

uses S1 images as input. Here we used one S2 image for LAIeff 

training, but in an area, where notable changes in the canopy do 905 

not take place, one could probably use the same LAIeff map for 

more than just one summer, so that only S1 data would be 

needed for the soil moisture map processing. This is a major 

advantage in areas that are often cloudy or at times of poor 

N N N N 
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illumination.  910 

Including LAIeff in the training set provided the machine 

learning algorithm information about the attenuation of the 

radar signal in the canopy and prevents the method from finding 

solutions that are not consistent with that. In the study area there 

was a vague increasing trend of soil moisture with decreasing 915 

LAIeff. This might favor finding high soil moisture values in low 

LAIeff area. However, the trend was so weak (R2 = 0.28) that it 

should not have a marked effect on the results. 

The reason for the morning images to have slightly smaller 

RMSE values than evening images in this study contrarily to 920 

the Polish wetland study [8] is partly due to the topography and 

location of the measurement points [Fig. 1][34]. Several of the 

discrete measurement points were in the distal slopes of the 

evening SAR images and prone to shading. In addition, this 

study profited by the continuous measurements, which 925 

provided an intelligent way to relate midday measurements to 

morning and evening S1 images. 

Soil moisture estimates are very important for various 

applications including climate, hydrological, biogeochemical 

and management purposes [71][72]. As subarctic areas are 930 

facing very drastic changes due to climate change, including 

changes in precipitation and snowmelt timing [73], it is 

essential to have high-resolution estimates from soil moisture 

conditions in time and space [74]. Our methodology could be 

further applied to other subarctic and arctic landscapes to 935 

provide soil moisture estimates for i) ecohydrological and 

vegetation water usage studies [75], ii) to improve greenhouse 

gas estimates from forest lands, iii) to map influences of 

different land use actions such as logging at the landscape level, 

and iv) to assess the forest fire risk. Additionally, better 940 

estimates from soil moisture can further help local land 

managers to identify spatially important areas from soil 

moisture point of view.    

Using machine learning methods requires extensive data sets 

to obtain generally applicable methods. When the data 945 

availability is limited in space or time, there is a considerable 

risk of overfitting. Hence, the results of this study rather 

demonstrate the capability of using S1 SAR images for seasonal 

soil moisture variation in one study area than provide a final 

method to be used in other areas. With larger amounts of soil 950 

moisture data, a generally applicable method could be 

developed, for example, using global soil moisture network 

databases.  

The results obtained using machine learning methods depend 

largely on the training data provided. Here the soil moisture 955 

distributions of the discrete data sets were slightly bimodal [Fig. 

2] and the continuous data sets were dominated by soil moisture 

values below 40%. The goal was to achieve a homogenous error 

structure, i.e. the low, average, and high soil moisture 

estimation accuracy should be about the same. For this purpose, 960 

the training data was chosen to cover the whole variation range 

of all parameters affecting the soil moisture about evenly. In 

addition, the choice of the best method was based on minmax 

norm, so that even the rare values are estimated at least at the 

accuracy of the minmax value. However, it depends on the 965 

application what kind of an error structure is desirable. If one 

would prefer to have the best accuracy for most cases at the 

expense of highly erroneous rare values, one would choose 

another norm (for example least squares) and pick the training 

set so that the most common values are most common also in 970 

that.  

The effect of the slightly bimodal soil moisture distribution 

on the error statistics was checked by deriving the RMSE, 90% 

quantile and max error values also separately for soil moisture 

ranges 5   ̶ 50% and 60   ̶ 90 % (Tables VIIA and VIIB in the 975 

Supplement material). For the lower range the soil moisture 

RMSE was 5.2% and 3.9% for all points in the morning and 

evening, respectively. Hence, the estimation accuracy was 

about the same as for the whole material. For the high soil 

moisture variation range the corresponding RMSE values were 980 

10.4% and 9.8%, respectively.  Hence, it was slightly poorer 

than for the whole material. Very probably this is mainly due to 

the inaccuracy of the conversion of the values measured 20 cm 

depth to surface values [Fig. 2, Tables IV - VI]. The RMSE 

value for the conversion formula derived using the discrete 985 

measurements was namely only 8.3%. The fraction of the 

converted data was for morning cases: 96% for the high range, 

35% for the low range and 40% for all points. For evening the 

corresponding values were 97%, 36% and 40%. 

Balancing between spatially distributed discrete 990 

measurement points and a few continuous measurement points 

was a major issue in this study. In addition, the instruments used 

for continuous measurements were not identical with those used 

for the discrete data sets. This inevitably affected the results to 

some extent. Especially, transforming the soil moisture 995 

measured at 20 cm depth to surface values certainly caused 

extra uncertainty, which is most probably seen in the scatter of 

points in Fig. 11. However, the achieved soil moisture 

estimation accuracy was of the order of that of the in situ 

measurements. 1000 

In the autumn underestimation of the soil moisture may occur 

because of reduced canopy scattering due to fall of deciduous 

leaves and possibly also the decreasing impedance of Norway 

spruce needles, which may take place already in August, while 

the trees prepare for the winter [64]. However, precipitation will 1005 

mask this effect. 

Although topography constitutes a major complication for 

the use of SAR data, the machine learning method was able to  

adapt to hilly terrain surprisingly well. Only the completely 

shaded areas or slopes of serious foreshortening  will not be 1010 

suited for soil moisture estimation. The use of both morning and 

evening data is complicated by the hilly terrain, because the 

shaded or foreshortened pixels are in different locations. In 

addition, the discrete in situ measurements were taken in 

daytime after the morning SAR image retrieval, whereas the 1015 

evening image overpasses succeeded the discrete in situ 

measurements. Comparing the average backscattered 

intensities of the images to precipitation and air humidity 

[Supplementary Figs 4 and 5] showed that the dynamic 

variation of the evening image intensity values is smaller than 1020 

that of the morning images, especially in late summer. It may 

be that vegetation reacts differently to varying moisture 

conditions during late summer than at the beginning of summer. 
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Hence, also for this reason deriving a consistent soil moisture 

estimation method functioned better using morning images. 1025 

The difference of swaths was taken into account by the local 

incidence and azimuth angles. Within the dynamic range of the 

swath incidence angles corresponding to the in situ 

measurement sites, the soil moisture distributions of the whole 

season were very similar for all swaths. However, it may be that 1030 

results would improve, if the LAIeff values were derived 

separately for each swath, as the signal penetration in canopy 

depends on the incidence angle. When a larger in situ data set 

is available, specific methods adapted to the diverse swaths can 

be derived, which will improve the results even more. 1035 

VI. CONCLUSION 

In this study a S1-based method for assessing soil moisture in 

a heterogeneous landscape was developed. It was demonstrated 

that with machine learning methods, PIMSAR non-local mean 

filtered S1 pixels of 10 m can be used for accurate instantaneous 1040 

surface soil moisture estimation. The RMSE values were within 

6.5% for the morning images and 8.8.% for the evening images, 

which is of the order of the accuracy of the in situ 

measurements. The soil moisture estimates followed 

consistently the seasonal variation of the in situ values. 1045 

Precipitation events were also manifested in the soil moisture 

map time series. The machine learning method was quite 

robust, since the pixelwise sensitivity to the choice of the 

method was estimated to be on the average 6.3% with a standard 

deviation of 5.7% (in absolute soil moisture values).  1050 

Yet, the validity of the method could be checked only in the 

92 different locations, for which soil moisture data was 

available: altogether 678 discrete values and 8 points of 

continuous data. Hence, although the filtered S1 data used has 

very high spatial resolution, ~20 m, with pixel size of 10 m, the 1055 

spatially very limited in situ data set does not allow to conclude 

that the derived soil moisture maps would have the same soil 

moisture accuracy in the pixel resolution as the individual 

pixels used for developing and validating the soil moisture 

retrieval method. 1060 

To conclude, S1 has a high capability for observing seasonal 

soil moisture variation of subarctic forested and wetland areas. 

Furthermore, this methodology could be applied also to other 

subarctic and arctic regions to provide soil moisture estimates 

for the following purposes: 1065 

• ecohydrological and vegetation water usage studies 

• to improve greenhouse gas estimates from forest 

lands 

• to map influences of different land use actions such 

as logging at the landscape level 1070 

• to assess the forest fire risk. 
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