772,565 research outputs found

    Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    Full text link
    Star formation depends on the available gaseous "fuel" as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.Comment: 8 pages, 1 figure; to appear in "IAU Symposium 270: Computational Star formation", Eds. J. Alves, B. Elmegreen, J. Girart, V. Trimbl

    Formation of proto-clusters and star formation within clusters: apparent universality of the initial mass function ?

    Full text link
    It is believed that the majority of stars form in clusters. Therefore it is likely that the gas physical conditions that prevail in forming clusters, largely determine the properties of stars that form and in particular the initial mass function. We develop an analytical model to account for the formation of low mass clusters and the formation of stars within clusters. The formation of clusters is determined by an accretion rate, the virial equilibrium and energy as well as thermal balance. For this latter both molecular and dust cooling are considered using published rates. The star distribution is computed within the cluster using the physical conditions inferred from this model and the Hennebelle & Chabrier theory. Our model reproduces well the mass-size relation of low mass clusters (up to few ‚ČÉ103\simeq 10^3 M‚äô_\odot of stars corresponding to about 5 times more gas) and an initial mass function which is i)i) very close to the Chabrier's IMF, ii)ii) weakly dependent on the mass of the clusters, iii)iii) relatively robust to (i.e. not too steeply dependent on) variations of physical quantities as accretion rate, radiation and cosmic rays abundances. The weak dependence of the mass distribution of stars with the cluster mass results from the compensation between varying clusters densities, velocity dispersions and temperatures all inferred from first physical principles. This constitutes a possible explanation for the apparent universality of the IMF within the Galaxy though variations with the local conditions could certainly be observed.Comment: accepted for publication in A&

    From the warm magnetized atomic medium to molecular clouds

    Full text link
    {It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at \sim 2 \times 10^{21} \psc and decays rapidly at higher values; the magnetic intensity correlates weakly with density from n‚ąľ0.1n \sim 0.1 to 10^4 \pcc, and then varies roughly as n1/2n^{1/2} for higher densities.} {The global statistical properties of such molecular clouds are reasonably consistent with observational determinations. Our numerical simulations suggest that molecular clouds formed by the moderately supersonic collision of warm atomic gas streams.}Comment: submitted to A&

    A Compact Solid State Detector for Small Angle Particle Tracking

    Get PDF
    MIDAS (MIcrostrip Detector Array System) is a compact silicon tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron, MAMI. MIDAS provides a trigger for charged hadrons, p/pi identification and particle tracking in the region 7 deg < theta < 16 deg. In this paper we present the main characteristics of MIDAS and its measured performances.Comment: 13 pages (9 figures). Submitted to NIM

    Comparing the statistics of interstellar turbulence in simulations and observations: Solenoidal versus compressive turbulence forcing

    Full text link
    We study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing, and compressive (curl-free) forcing, and compare our results to observations reported in the literature. We solve the equations of hydrodynamics on grids with up to 1024^3 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with mixtures of both forcings are also analysed. We find velocity dispersion--size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger turbulent compression at the same RMS Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We conclude that the strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells.Comment: 28 pages, 20 figures, published as Highlight Paper in A&A, 512, A81 (2010); simulation movies available at http://www.ita.uni-heidelberg.de/~chfeder/videos.shtml?lang=e

    Modelling the shapes of the largest gravitationally bound objects

    Full text link
    We combine the physics of the ellipsoidal collapse model with the excursion set theory to study the shapes of dark matter halos. In particular, we develop an analytic approximation to the nonlinear evolution that is more accurate than the Zeldovich approximation; we introduce a planar representation of halo axis ratios, which allows a concise and intuitive description of the dynamics of collapsing regions and allows one to relate the final shape of a halo to its initial shape; we provide simple physical explanations for some empirical fitting formulae obtained from numerical studies. Comparison with simulations is challenging, as there is no agreement about how to define a non-spherical gravitationally bound object. Nevertheless, we find that our model matches the conditional minor-to-intermediate axis ratio distribution rather well, although it disagrees with the numerical results in reproducing the minor-to-major axis ratio distribution. In particular, the mass dependence of the minor-to-major axis distribution appears to be the opposite to what is found in many previous numerical studies, where low-mass halos are preferentially more spherical than high-mass halos. In our model, the high-mass halos are predicted to be more spherical, consistent with results based on a more recent and elaborate halo finding algorithm, and with observations of the mass dependence of the shapes of early-type galaxies. We suggest that some of the disagreement with some previous numerical studies may be alleviated if we consider only isolated halos.Comment: 15 pages, 8 figures. New appendix added, extended discussion. Matches version accepted by MNRA

    Two-dimensional AMR simulations of colliding flows

    Full text link
    Colliding flows are a commonly used scenario for the formation of molecular clouds in numerical simulations. Due to the thermal instability of the warm neutral medium, turbulence is produced by cooling. We carry out a two-dimensional numerical study of such colliding flows in order to test whether statistical properties inferred from adaptive mesh refinement (AMR) simulations are robust with respect to the applied refinement criteria. We compare probability density functions of various quantities as well as the clump statistics and fractal dimension of the density fields in AMR simulations to a static-grid simulation. The static grid with 2048^2 cells matches the resolution of the most refined subgrids in the AMR simulations. The density statistics is reproduced fairly well by AMR. Refinement criteria based on the cooling time or the turbulence intensity appear to be superior to the standard technique of refinement by overdensity. Nevertheless, substantial differences in the flow structure become apparent. In general, it is difficult to separate numerical effects from genuine physical processes in AMR simulations.Comment: 6 pages, 6 figures, submitted to A&

    Some improvements to the spherical collapse model

    Full text link
    I study the joint effect of dynamical friction, tidal torques and cosmological constant on clusters of galaxies formation I show that within high-density environments, such as rich clusters of galaxies, both dynamical friction and tidal torques slows down the collapse of low-? peaks producing an observable variation in the time of collapse of the perturbation and, as a consequence, a reduction in the mass bound to the collapsed perturbation Moreover, the delay of the collapse produces a tendency for less dense regions to accrete less mass, with respect to a classical spherical model, inducing a biasing of over-dense regions toward higher mass I show how the threshold of collapse is modified if dynamical friction, tidal torques and a non-zero cosmological constant are taken into account and I use the Extended Press Schecter (EPS) approach to calculate the effects on the mass function Then, I compare the numerical mass function given in Reed et al (2003) with the theoretical mass function obtained in the present paper I show that the barrier obtained in the present paper gives rise to a better description of the mass function evolution with respect to other previous models (Sheth & Tormen 1999, MNRAS, 308, 119 (hereafter ST); Sheth & Tormen 2002, MNRAS, 329, 61 (hereafter ST1)

    Clump morphology and evolution in MHD simulations of molecular cloud formation

    Full text link
    Abridged: We study the properties of clumps formed in three-dimensional weakly magnetized magneto-hydrodynamic simulations of converging flows in the thermally bistable, warm neutral medium (WNM). We find that: (1) Similarly to the situation in the classical two-phase medium, cold, dense clumps form through dynamically-triggered thermal instability in the compressed layer between the convergent flows, and are often characterised by a sharp density jump at their boundaries though not always. (2) However, the clumps are bounded by phase-transition fronts rather than by contact discontinuities, and thus they grow in size and mass mainly by accretion of WNM material through their boundaries. (3) The clump boundaries generally consist of thin layers of thermally unstable gas, but these layers are often widened by the turbulence, and penetrate deep into the clumps. (4) The clumps are approximately in both ram and thermal pressure balance with their surroundings, a condition which causes their internal Mach numbers to be comparable to the bulk Mach number of the colliding WNM flows. (5) The clumps typically have mean temperatures 20 < T < 50 K, corresponding to the wide range of densities they contain (20 < n < 5000 pcc) under a nearly-isothermal equation of state. (6) The turbulent ram pressure fluctuations of the WNM induce density fluctuations that then serve as seeds for local gravitational collapse within the clumps. (7) The velocity and magnetic fields tend to be aligned with each other within the clumps, although both are significantly fluctuating, suggesting that the velocity tends to stretch and align the magnetic field with it. (8) The typical mean field strength in the clumps is a few times larger than that in the WNM. (9) The magnetic field strength has a mean value of B ~ 6 mu G ...Comment: substantially revised version, accepted by MNRAS, 13 pages, 14 figures, high resolution version: http://www.ita.uni-heidelberg.de/~banerjee/publications/MC_Formation_Paper2.pd

    Dynamic star formation in the massive DR21 filament

    Full text link
    The formation of massive stars is a highly complex process in which it is not clear whether the star-forming gas is in global gravitational collapse or in an equilibrium state, supported by turbulence. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, the filament containing the well-known sources DR21 and DR21(OH), we expect to find observational signatures that allow to discriminate between the two views. We use molecular line data from our 13CO 1-0, CS 2-1, and N2H+ 1-0 survey of the Cygnus X region obtained with the FCRAO and high-angular resolution observations of CO, CS, HCO+, N2H+, and H2CO, obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of highest column-density, i.e. dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO+ and 12CO are observed along and across the whole DR21 filament. From modelling the observed spectra, we obtain a typical infall speed of 0.6 km/s and mass accretion rates of the order of a few 10^-3 Msun/yr for the two main clumps constituting the filament. These massive (4900 and 3300 Msun) clumps are both gravitationally contracting. All observed kinematic features in the DR21 filament can be explained if it is formed by the convergence of flows at large scales and is now in a state of global gravitational collapse. Whether this convergence of flows originated from self-gravity at larger scales or from other processes can not be settled with the present study. The observed velocity field and velocity dispersion are consistent with results from (magneto)-hydrodynamic simulations where the cores lie at the stagnation points of convergent turbulent flows.Comment: Astronomy and Astrophysics, in pres
    • ‚Ķ