1,937 research outputs found

    Vectorization and Parallelization of the Adaptive Mesh Refinement N-body Code

    Full text link
    In this paper, we describe our vectorized and parallelized adaptive mesh refinement (AMR) N-body code with shared time steps, and report its performance on a Fujitsu VPP5000 vector-parallel supercomputer. Our AMR N-body code puts hierarchical meshes recursively where higher resolution is required and the time step of all particles are the same. The parts which are the most difficult to vectorize are loops that access the mesh data and particle data. We vectorized such parts by changing the loop structure, so that the innermost loop steps through the cells instead of the particles in each cell, in other words, by changing the loop order from the depth-first order to the breadth-first order. Mass assignment is also vectorizable using this loop order exchange and splitting the loop into 2Ndim2^{N_{dim}} loops, if the cloud-in-cell scheme is adopted. Here, NdimN_{dim} is the number of dimension. These vectorization schemes which eliminate the unvectorized loops are applicable to parallelization of loops for shared-memory multiprocessors. We also parallelized our code for distributed memory machines. The important part of parallelization is data decomposition. We sorted the hierarchical mesh data by the Morton order, or the recursive N-shaped order, level by level and split and allocated the mesh data to the processors. Particles are allocated to the processor to which the finest refined cells including the particles are also assigned. Our timing analysis using the Λ\Lambda-dominated cold dark matter simulations shows that our parallel code speeds up almost ideally up to 32 processors, the largest number of processors in our test.Comment: 21pages, 16 figures, to be published in PASJ (Vol. 57, No. 5, Oct. 2005

    Application of Kawaguchi Lagrangian formulation to string theory

    Get PDF
    String-scalar duality proposed by Y. Hosotani and membrane-scalar duality by A. Sugamoto are reexamined in the context of Kawaguchi Lagrangian formulation. The characteristic feature of this formulation is the indifferent nature of fields and parameters. Therefore even the exchange of roles between fields and parameters is possible. In this manner, dualities above can be proved easily. Between Kawaguchi metrics of the dually related theories, a simple relation is found. As an example of the exchange between fermionic fields and parameters, a replacement of the role of Grassmann parameters of the 2-dimensional superspace by the 9th component of Neveu-Schwarz-Ramond (NSR) fermions is studied in superstring model. Compactification is also discussed in this model.Comment: 12 pages, minor modification, published in Phys. Lett.

    Sulphur lubricant additive for oils and emulsions

    Get PDF
    Imperial Users onl

    Characteristics of cosmic ray pole-equator anisotropy derived from spherical harmonic analysis of neutron monitor data

    Get PDF
    The spherical harmonic analysis of cosmic ray neutron data from the worldwide network neutron monitor stations during the years, 1966 to 1969 was carried out. The second zonal harmonic component obtained from the analysis corresponds to the Pole-Equator anisotropy of the cosmic ray neutron intensity. Such an anisotropy makes a semiannual variation. In addition to this, it is shown that the Pole-Equator anisotropy makes a variation depending on the interplanetary magnetic field (IMF) sector polarities around the passages of the IMF sector boundary. A mechanism to interpret these results is also discussed

    Application of matrix product states to the Hubbard model in one spatial dimension

    Full text link
    We investigate the application of matrix product states to the Hubbard model in one spatial dimension with both of open and periodic boundary conditions. We develop the variatinal method that the optimization of the variational parameters is carried out locally and sequentially in the framework of matrix product operators (MPO) by including the sign, due to the anti-commutation relation of fermion operators, in the matrix element of MPO. The numerical accuracy of the ground state energy is examined.Comment: 5 pages, 2 figure
    • …
    corecore