1,989 research outputs found

    ENVIRONMENTAL EDUCATION -- NORTH CAROLINA'S APPROACH

    Get PDF
    Environmental Economics and Policy,

    Formaldehyde Silhouettes Against the Cosmic Microwave Background: A Mass-Limited, Distance-Independent, Extinction-Free Tracer of Star Formation Across the Epoch of Galaxy Evolution

    Full text link
    We examine the absorption of cosmic microwave background (CMB) photons by formaldehyde (H2CO) over cosmic time. The K-doublet rotational transitions of H2CO become "refrigerated" - their excitation temperatures are driven below the CMB temperature - via collisional pumping by molecular hydrogen (H2). "Anti-inverted" H2CO line ratios thus provide an accurate measurement of the H2 density in molecular clouds. Using a radiative transfer model, we demonstrate that H2CO centimeter wavelength line excitation and detectability are nearly independent of redshift or gas kinetic temperature. Since the H2CO K-doublet lines absorb CMB light, and since the CMB lies behind every galaxy and provides an exceptionally uniform extended illumination source, H2CO is a distance-independent, extinction-free molecular gas mass-limited tracer of dense gas in galaxies. A Formaldehyde Deep Field could map the history of cosmic star formation in a uniquely unbiased fashion and may be possible with large bandwidth wide-field radio interferometers whereby the silhouettes of star-forming galaxies would be detected across the epoch of galaxy evolution. We also examine the possibility that H2CO lines may provide a standardizable galaxy ruler for cosmology similar to the Sunyaev-Zel'dovich effect in galaxy clusters but applicable to much higher redshifts and larger samples. Finally, we explore how anti-inverted meterwave H2CO lines in galaxies during the peak of cosmic star formation may contaminate HI 21 cm tomography of the Epoch of Reionization.Comment: Accepted by ApJ Letters. 5 pages, 5 figure

    Densitometry and Thermometry of Starburst Galaxies

    Full text link
    With a goal toward deriving the physical conditions in external galaxies, we present a survey of formaldehyde (H2CO) and ammonia (NH3) emission and absorption in a sample of starburst galaxies using the Green Bank Telescope. By extending well-established techniques used to derive the spatial density in star formation regions in our own Galaxy, we show how the relative intensity of the 1(10)-1(11) and 2(11)-2(12) K-doublet transitions of H2CO can provide an accurate densitometer for the active star formation environments found in starburst galaxies (c.f. Mangum et al. 2008). Similarly, we employ the well-established technique of using the relative intensities of the (1,1), (2,2), and (4,4) transitions of NH3 to derive the kinetic temperature in starburst galaxies. Our measurements of the kinetic temperature constrained spatial density in our starburst galaxy sample represent the first mean density measurements made toward starburst galaxies. We note a disparity between kinetic temperature measurements derived assuming direct coupling to dust and those derived from our NH3 measurements which points to the absolute need for direct gas kinetic temperature measurements using an appropriate molecular probe. Finally, our spatial density measurements point to a rough constancy to the spatial density (10^{4.5} to 10^{5.5} cm^{-3}) in our starburst galaxy sample. This implies that the Schmidt-Kennicutt relation between L_{IR} and M_{dense}: (1) Is a measure of the dense gas mass reservoir available to form stars, and (2) Is not directly dependent upon a higher average density driving the star formation process in the most luminous starburst galaxies.Comment: 4 pages, to appear in proceedings of The 5th Zermatt ISM Symposiu

    Of Heart and Mind: Social Policy Essays in Honor of Sar A. Levitan

    Get PDF
    The essays in this volume, authored by close friends, associates and students of Sar Levitan, pay tribute to the enduring mark he left on the field of social policy. The book is loosely organized around the method of analysis taught and practiced by Levitan: identifying problems through the examination of facts, developing a thorough understanding of institutions, assessing institutional policies, and evaluating policy options.https://research.upjohn.org/up_press/1197/thumbnail.jp
    • …
    corecore