178,839 research outputs found

    Adaptive Decision Support for Academic Course Scheduling Using Intelligent Software Agents

    Get PDF
    Academic course scheduling is a complex operation that requires the interaction between different users including instructors and course schedulers to satisfy conflicting constraints in an optimal manner. Traditionally, this problem has been addressed as a constraint satisfaction problem where the constraints are stationary over time. In this paper, we address academic course scheduling as a dynamic decision support problem using an agent-enabled adaptive decision support system. In this paper, we describe the Intelligent Agent Enabled Decision Support (IAEDS) system, which employs software agents to assist humans in making strategic decisions under dynamic and uncertain conditions. The IAEDS system has a layered architecture including different components such as a learning engine that uses historic data to improve decision-making and an intelligent applet base that provides graphical interface templates to users for frequently requested decision-making tasks. We illustrate an application of our IAEDS system where agents are used to make complex scheduling decisions in a dynamically changing environment

    A Value Focused Thinking Approach to Academic Course Scheduling

    Get PDF
    In 1997, the School of Engineering of the United States Air Force Institute of Technology began exploring ways of automating the academic course scheduling process. The administration desired an expedient approach for course scheduling which supports the institute\u27s mission of providing scientific and technological education to officers from all branches of military service, as well as international military forces. The scheduling approach needed to be flexible, efficient, and represent the institute\u27s values and principles. Decision Analysis (DA) and specifically, Value Focused Thinking (VFT), is used to decompose the complex problem of academic course scheduling and determine the factors that are important in a schedule. An MS Excel based Decision Support System generates a Mixed Integer Program (MIP). The MIP formulation combines the institute\u27s goals with facility constraints, faculty preferences, student preferences, and administration guidance to develop an academic course schedule representative of the institute\u27s values

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    A bi-objective genetic algorithm approach to risk mitigation in project scheduling

    Get PDF
    A problem of risk mitigation in project scheduling is formulated as a bi-objective optimization problem, where the expected makespan and the expected total cost are both to be minimized. The expected total cost is the sum of four cost components: overhead cost, activity execution cost, cost of reducing risks and penalty cost for tardiness. Risks for activities are predefined. For each risk at an activity, various levels are defined, which correspond to the results of different preventive measures. Only those risks with a probable impact on the duration of the related activity are considered here. Impacts of risks are not only accounted for through the expected makespan but are also translated into cost and thus have an impact on the expected total cost. An MIP model and a heuristic solution approach based on genetic algorithms (GAs) is proposed. The experiments conducted indicate that GAs provide a fast and effective solution approach to the problem. For smaller problems, the results obtained by the GA are very good. For larger problems, there is room for improvement

    An overview of recent research results and future research avenues using simulation studies in project management

    Get PDF
    This paper gives an overview of three simulation studies in dynamic project scheduling integrating baseline scheduling with risk analysis and project control. This integration is known in the literature as dynamic scheduling. An integrated project control method is presented using a project control simulation approach that combines the three topics into a single decision support system. The method makes use of Monte Carlo simulations and connects schedule risk analysis (SRA) with earned value management (EVM). A corrective action mechanism is added to the simulation model to measure the efficiency of two alternative project control methods. At the end of the paper, a summary of recent and state-of-the-art results is given, and directions for future research based on a new research study are presented

    Integral multidisciplinary rehabilitation treatment planning

    Get PDF
    This paper presents a methodology to plan treatments for rehabilitation outpatients. These patients require a series of treatments by therapists from various disciplines. In current practice, when treatments are planned, a lack of coordination between the different disciplines, along with a failure to plan the entire treatment plan at once, often occurs. This situation jeopardizes both the quality of care and the logistical performance. The multidisciplinary nature of the rehabilitation process complicates planning and control. An integral treatment planning methodology, based on an integer linear programming (ILP) formulation, ensures continuity of the rehabilitation process while simultaneously controlling seven performance indicators including access times, combination appointments, and therapist utilization. We apply our approach to the rehabilitation outpatient clinic of the Academic Medical Center (AMC) in Amsterdam, the Netherlands. Based on the results of this case, we are convinced that our approach can be valuable for decision-making support in resource capacity planning and control at many rehabilitation outpatient clinics. The developed model will be part of the new hospital information system of the AMC

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making
    corecore