
University of Nebraska at Omaha
DigitalCommons@UNO

Information Systems and Quantitative Analysis
Faculty Publications

Department of Information Systems and
Quantitative Analysis

2005

Adaptive Decision Support for Academic Course
Scheduling Using Intelligent Software Agents
Prithviraj Dasgupta
University of Nebraska at Omaha, pdasgupta@unomaha.edu

Deepak Khazanchi
University of Nebraska at Omaha, khazanchi@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/isqafacpub

Part of the Databases and Information Systems Commons

This Article is brought to you for free and open access by the Department
of Information Systems and Quantitative Analysis at
DigitalCommons@UNO. It has been accepted for inclusion in Information
Systems and Quantitative Analysis Faculty Publications by an authorized
administrator of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

Recommended Citation
Dasgupta, Prithviraj and Khazanchi, Deepak, "Adaptive Decision Support for Academic Course Scheduling Using Intelligent Software
Agents" (2005). Information Systems and Quantitative Analysis Faculty Publications. 4.
https://digitalcommons.unomaha.edu/isqafacpub/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232751115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/isqafacpub?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/isqafacpub?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/isqa?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/isqa?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/isqafacpub?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/isqafacpub/4?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Dasgupta, P., & Khazanchi, D. (2005). Adaptive decision support for academic course scheduling
using intelligent software agents. International Journal of Technology in Teaching and Learning,

1(2), 63-78.

__
Prithviraj Dasgupta is an Assistant Professor of Computer Science in the Computer Science
Department at the University of Nebraska at Omaha. Deepak Khazanchi is Peter Kiewet
Distinguished Professor in the Information Systems & Quantitative Analaysis Department at the
University of Nebraska at Omaha. Please contact Dr. Dasgupta College at the College of
Information Science & Technology, University of Nebraska at Omaha, Omaha, NE 68182, E-mail:
pdasgupta@mail.unomaha.edu

Adaptive Decision Support for Academic Course
Scheduling Using Intelligent Software Agents

Prithviraj Dasgupta Deepak Khazanchi

University of Nebraska at Omaha

Academic course scheduling is a complex operation that
requires the interaction between different users including
instructors and course schedulers to satisfy conflicting
constraints in an optimal manner. Traditionally, this
problem has been addressed as a constraint satisfaction
problem where the constraints are stationary over time.
In this paper, we address academic course scheduling as
a dynamic decision support problem using an agent-
enabled adaptive decision support system. In this paper,
we describe the Intelligent Agent Enabled Decision
Support (IAEDS) system, which employs software
agents to assist humans in making strategic decisions
under dynamic and uncertain conditions. The IAEDS
system has a layered architecture including different
components such as a learning engine that uses historic
data to improve decision-making and an intelligent
applet base that provides graphical interface templates to
users for frequently requested decision-making tasks.
We illustrate an application of our IAEDS system where
agents are used to make complex scheduling decisions in
a dynamically changing environment.

Keywords: Course Scheduling, Adaptive Decision
Support System, Software Agents

 The advent of the Internet has enabled interaction between users using different
formats such as text and multimedia, over geographically dispersed areas, for solving
complex problems. Rapid interaction between users over the Internet has already
automated various processes including file-sharing and e-commerce. In this paper, we

International Journal of Technology in Teaching & Learning 64

address the problem of academic course scheduling in a networked environment.
Academic course scheduling constitutes a complex problem that requires the interaction
between different users including instructors and course schedulers to resolve conflicting
constraints in an optimal manner. Traditionally, this problem has been addressed as a
constraint satisfaction problem where the constraints are available at the central location
that performs the course scheduling. Here, we address academic course scheduling in a
networked environment using intelligent agents within a decision support framework.
 Decision Support Systems (DSS) comprise software systems that assist humans in
making complex decisions in real-life problem domains. With the advent of the Internet
and powerful computing devices over the last decade, dynamic and intelligent decision
support is rapidly emerging as the new research direction in the field of decision support
systems. Decision-making problems in real life are characterized by complex,
unstructured nature of problem domains, unpredictable outcome of decisions due to the
dynamic nature of problems and information, and the potential risks associated with
making an incorrect/inaccurate decision. In such a scenario, a naive model that uses a
stationary mapping from situation to decision is inadequate for making correct decisions.
The information from prior decisions needs to be adapted to the constraints and
parameters specified by the current environment to make an accurate decision in a
dynamic scenario. With the development of software technologies such as intelligent
agents, it is now possible to address the fundamental challenge of combining real-time
environmental data with existing decision rules and historical knowledge about the
domain obtained from previous experience. In this paper, we address the problem of
dynamic decision making using a software agent enabled adaptive DSS that combines
real-time environmental data with existing decision rules and historical knowledge about
the domain to engender informed decision making.
 The rest of the paper is organized as follows. In the next section, we establish the
background of this research by discussing related work on DSS and software agents. We
elaborate on the notion of agent-enabled DSS in the next section and describe our
Intelligent Agent-Enabled Decision Support (IAEDS) architecture after that.
Subsequently, we illustrate the proposed IAEDS architecture with a detailed discussion of
a dynamic academic course scheduling system. In the final section, we summarize this
paper and discuss future research directions.

RELATED WORK

 DSS are software applications that have been used over the last few decades to
provide support for many structured and unstructured problems such as strategic
planning, investment planning, stock portfolio management, enterprise planning, human
resources management, supply chain planning, knowledge management, case-based
reasoning and help desk automation (Clemen, 1996; Mallach, 2000; Marakas, 1998;
Mora, Forgionne, & Gupta, 2002; Turban and Aronson, 1997). DSS components such as
knowledge management systems, model management systems and data management
systems aid humans in making better decisions by incorporating previous knowledge and
information about the domain. Over the past two decades, decision support systems and
software agent enabled systems have been researched independently both in academia
and in commercial applications. Several businesses have successfully implemented
decision support systems to solve problems including human resources management,
supply chain planning, help desk automation, and placement of new office locations.
Most of these decision support systems use static models of the problem domain because
the underlying data in these applications does not change drastically over time. Some
dynamic decision models are used in applications such as sales forecasting, predicting

Adaptive DSS Using Intelligent Agents 65

consumer responses and deciding company strategies. Decision support using dynamic
models is more complicated because it involves parameters that change over time and are
difficult to predict or estimate beforehand. Although dynamic decision support systems
have been developed successfully, not many applications exist that intelligently
incorporate the dynamics of a real-time setting into the decision making process.
Intelligent software agents provide a technology that can be used to obtain knowledge
from dynamically changing environments and thus potentially allowing DSS users to
make more informed and accurate decisions (Mora et al., 2002).
 Software agents (Russell & Norvig, 2003; Weiss, 1999) are used widely in various
applications such as searching information on the Web (Dasgupta, Narasimhan, Moser, &
Melliar-Smith, 1999; Knapik & Johnson, 1997), tracking browsing behavior of online
users (Sahai, Billiart & Morin, 1997), implementing trading algorithms for online
auctions (Sandholm, 2002), assisting humans in online activities such as filling forms or
presenting information in a concise form (Padgham & Winikoff , 2004), and, even for
security and privacy applications such as detecting spyware, implementing security
policies on Web servers, and, filtering spam (Dasgupta, Moser & Melliar-Smith, 2000).
For example, MySimon.com uses software agents to compare the prices of items from
different online sellers while online merchants such as Amazon.com and E-bay employ
software agents for adjusting the prices of items dynamically depending on factors such
as consumer preferences and market demand. In the Virtual Information Processing
Agent Research (VIPAR) project that is targeted for military applications, intelligent
software agents are used to extract relevant information from data collected from various
sources into a form that can be analyzed by humans (Potok, Elmore, Reed, & Sheldon,
2003). Recently, the LogNet system being developed for Boeing uses decision support
techniques enabled by an agent based learning engine to determine re-supply decisions
for fuel, ammunition and medical supplies during wartime. The real-time information
obtained from the battlefield is used to improve logistics by observing correlations
between current situations and the outcomes of past re-supply decisions.
 Academic course scheduling or timetabling has been traditionally viewed as a
constraint satisfaction problem (Blanco & Khatib, 1998; Dignum, Nuijten, & Janssen,
1995). Various techniques including linear programming (Carter, 1986), logic
programming (Frangouli, Harmandas, & Stamatopoulos, 1995; Stamatopoulos, Viglas &
Karaboyas, 1998), genetic algorithms (Burke, Elliman & Weare, 1995; Elmohamed,
Coddington, & Fox, 1998), self adaptive algorithms (Socha, Sampels, & Manfrin, 2003)
and heuristic-based approaches (Burke, Elliman, & Weare, 1994; Lewandowski &
Condon, 1996) have been used to resolve conflicts in course scheduling problems.
However, most of these algorithms assume that the constraints are already available at the
central location performing the course scheduling. In this paper, our focus is on
addressing course scheduling problems in a distributed environment within the
framework of a decision support system using software agents.

DYNAMIC DECISION SUPPORT USING SOFTWARE AGENTS

 A dynamic environment is characterized by non-deterministic and possibly rapid
changes. DSS operating in dynamic environments should therefore adapt the decision
making procedure to the current parameters and constraints of the real-time environment
to assist the decision maker in reaching an accurate and effective decision. Making the
correct decision can be looked upon as solving a constraint satisfaction problem given the
relevant historical information and a set of parameters describing the current
environment. For complex applications, the solution of this problem can become quite
involved. Therefore, it is difficult, and at times even impossible, for humans to make

International Journal of Technology in Teaching & Learning 66

correct decisions without any computational aid. Software agents provide a suitable
paradigm for automating complex tasks and solving complex problems more accurately
and rapidly than humans. Software agents can enhance traditional DSS by rapidly
updating and using knowledge and domain information from a DSS so that the agents can
respond efficiently and accurately to user queries.
 An agent is a software entity that can autonomously perform the tasks that have been
encoded into it without continuous supervision (Bigus & Bigus, 2001; Bradshaw, 1997;
Weiss, 1999, Wooldridge, 2002). Besides being autonomous, a software agent is
characterized by the following key features:

• Goal-directed: An agent can be provided with a goal such as making a
decision on a particular attribute of a system. The tasks that are encoded into
the agent enable it to work towards that goal.

• Reactive: An agent responds to its queries or requests from its environment
and takes responds to those queries through actions.

• Pro-active: An agent is also self-motivated to perform actions that help it to
achieve its goal more efficiently.

 Software agents can also be adapted to provide support for strategic decision-making
and/or semi-structured problem solving. For example, a software agent can be
programmed to dynamically learn system parameters and use these parameters to
improve or evolve its actions so that it can reach its goal more efficiently. However, the
knowledge that an intelligent agent acquires during execution cannot be stored beyond its
lifetime. Discarding this knowledge would also be inappropriate as later decisions might
require the experience gained by previous agents. An intelligent agent is frequently
augmented with a knowledge base to store the experiences it acquires from the
environment (Bui & Lee, 1999; Power, 2000). DSS contain components such as
knowledge management subsystems, data management subsystems and model
management subsystems that store domain data, knowledge and rules for enabling the
decision process (Turban, 2001). In consequence, an intelligent agent enabled decision
support system can potentially store the knowledge gained by software agents in a
knowledge base along with existing rules governing the domain and data about the
environment.

IAEDS SYSTEM ARCHITECTURE

 The objective of our proposed Intelligent Agent Enabled Decision Support (IAEDS)
system architecture is to combine the advantages from the domains of software agent
enabled computing and decision support systems. Traditional DSS comprise knowledge
and rules that are static in nature. The knowledge gained by software agents can be used
to dynamically update the information stored in a DSS so that it can respond to user
queries and requests more efficiently. Our proposed IAEDS system architecture
combines software agent based computation with a dynamically updated DSS. The
software model for the IAEDS system is illustrated in Figure 1. The functionality of the
system can be broadly categorized into two separate layers; viz., a software agent layer
that encapsulates the operation of agents and a decision support layer that contains the
modules for decision support.

SOFTWARE AGENT LAYER

 The software agent layer contains the tasks performed by the intelligent software
agents in the IAEDS system. These tasks include:

Adaptive DSS Using Intelligent Agents 67

• Extract and filter the user query.
• Translate the user query from a Web-based markup language such as XML

into a domain specific query language understandable by agents. We propose
to use FIPA ACL (FIPAACL, 2004) as the language for interactions between
our agents. FIPA ACL is a performative based language that has been
proposed and adopted by the Foundation for Intelligent Physical Agents
(FIPA) as the standard for interoperations between heterogeneous software
agents.

• Create and execute agents to perform the tasks requested by the user.
• Store reusable agents in an agent repository for performing frequently

requested tasks.
• Assimilate the knowledge gathered by the agents to improve the system’s

intelligence and decision-making capabilities.

Figure 1. High-level Schematic for IAEDS System

Intelligent Agent Layer

Decision Support Layer

IAEDS System

Wireless Link
Human
User and/or

Figure 2. Detailed IAEDS System Architecture

International Journal of Technology in Teaching & Learning 68

 The different modules designed to perform these tasks are illustrated in the IAEDS
system architecture shown in Figure 2. The software agent layer is initially equipped with
software agents that are capable of performing common tasks in the problem domain. The
agents learn from their actions (Mitchell, 1997) and update the agent repository, and, data
and knowledge bases in the decision support layer while the system operates. As the
knowledge about the domain increases, the agents are dynamically evolved to perform
tasks that are more complex. The specific functionality of each of these modules is
summarized in Table 1.

Table 1. Functionality of Modules in the Software Agent Layer

Module Functionality
User Query
Module

User enters query through an XML annotated GUI.
A query parsing agent converts the query into the FIPA ACL syntax
The query-parsing agent then validates the query for consistency by accessing the domain
and knowledge management subsystems.
The validated query is forwarded to the agent creation module.

Agent
Creation
Module

Creates an agent for performing the specific action requested in the query.
Looks up in the agent repository to detect previously created agents with similar
functionality as that desired in the current query.
If such an agent is found, it is cloned from the agent repository and adapted to execute the
current query. Cloning the agent supports asynchronous operation of the system. If an agent
with a similar functionality is once again required before the current query completes, the
agent from the repository can be cloned again without waiting for the agent executing the
current query to complete its operation.
If an agent with the desired functionality is not found in the repository, a new agent is
created and its information is entered in the agent repository.

Agent
Execution
Platform

An agent runs on the agent execution platform to perform tasks outlined in user-query. The
agent needs to access the components in the decision support layer to determine whether its
actions are consistent with the domain knowledge and rules.
After execution, the agent is stored in the agent repository.
The result of agent execution is returned to user through the GUI.

User Response
Log

The user expresses his or her level of satisfaction with the query from the results returned by
the agent on a predetermined scale.
User responses are logged in the user response log along with the identity of the agent that
executed the query.
The contents of the user response log are used to update the knowledge management
subsystem in the decision support layer.

Agent
Repository

Contains agents created by the agent creation module.
Description of its behavior,
 Actions taken by the agent during execution and
 Responses returned by users after the agent's execution.

Learning
Engine

Uses machine-learning techniques to combine information about the agents stored in the
agent repository and information about the domain from the decision support layer.
Updates and refines the facts and rules stored in the knowledge management subsystem
within the decision support layer
Uses domain knowledge that it gathers from the software agents and the knowledge
management subsystem to create intelligent applets that aid the user.
Applets are equipped with the knowledge obtained from executing tasks requested by
previous users of the IAEDS system; they present a more intelligent and educated interface
to the user than the basic GUI.

Intelligent
Applet
Repository

Contains applets generated by the learning engine.
As new applets are generated, they are made accessible to the user
Agents in the user query-parsing module also check the applet repository while performing
consistency checks on user queries.

Adaptive DSS Using Intelligent Agents 69

DECISION SUPPORT LAYER

 The decision support layer performs the traditional functions of a DSS and also adapts
and improves itself from the results returned by the agents in the software agent layer. As
shown in Figure 2, this layer comprises a data management subsystem, a model
management subsystem, and a knowledge management subsystem. The functionality of
each of these subsystems is summarized in Table 2.

Table 2.Functionality of Modules in the Decision Support Layer

Module Functionality
Data
Management
Subsystem

Comprises a database for storing the data and information gathered from the
environment by the software agents, and a system to access that data through a
query tool.

Model
Management
Subsystem

Encapsulates the analytical model employed by the decision support layer to
solve the decision-making problem.
Different parameters associated with the decision-making problem are
provided as input and the model finds the optimal solution to the problem for
the present set of inputs.
The model is refined dynamically with the feedback given by the users so that
it can predict the optimum result more accurately.

Knowledge
Management
Subsystem

Contains the knowledge and rules for the domain.
Initially, the knowledge and rule bases are provided with information obtained
from historical data or from simulation runs.
As software agents gain information from the environment, the knowledge
base is updated with new knowledge and rules.

Query Handler Accepts queries sent to the decision support layer from the software agent layer
and hands it over to the appropriate subsystem within the decision support
layer.
Obtains the relevant information from all the subsystems in the decision
support layer and returns a single coherent reply to the software agent layer.

AN ACADEMIC COURSE SCHEDULING SYSTEM USING IAEDS

 In academic environments such as school, college, and university courses that are
offered during a particular term have to be assigned to instructors. The person
coordinating the course assignments also has to ensure that there are rooms available to
teach the courses, match the contents of courses with the teaching interests of different
instructors and resolve possible conflicts between different course schedules. The course
assignment problem can therefore be viewed as a non-trivial constraint satisfaction
problem. In our IAEDS-enabled course scheduling system, we use software agents that
utilize information including the course schedules of previous terms, the estimated
number of students for every course, availability of different classrooms, and the research
and teaching interests of different instructors, to develop a preliminary assignment of
courses to instructors. A mobile scheduling agent then requests every instructor to
respond to the preliminary course assignments. The final course schedule is determined
by resolving any conflicts that might have arisen after assimilating the instructors'
responses.
 We use IBM Aglets (Lange, D. & Oshima, 1998) to implement our course scheduling
system. Aglets are Java enabled mobile agents that encapsulate the program logic and can
be transported using HTTP between different computers. A computer should run an aglet
server on a specified port to be able to send, receive and host aglets. An aglet is
implemented as a Java thread that can be stopped, packaged into bytecode and transferred
to a remote site running an aglet server. On reaching the remote site, the aglet’s bytecode

International Journal of Technology in Teaching & Learning 70

is deserialized and the aglet’s execution thread is resumed. A mobile aglet visiting a
remote site can interact with the remote site through intermediaries in the form of
stationary aglets to extract information and perform tasks remotely.

EXTRACTING INSTRUCTORS’ PREFERENCES

 As shown in Figure 3, human users interacting through aglet servers running on
remote machines represent the instructors in our system. The steps for extracting the
instructors’ preferences are the following:

1. A central administrator site is used to initiate and coordinate the activities in the
course scheduling system. The administrator site contains a stationary
coordinatorAgent that obtains the information about the courses to be offered for
the current term from the human course administrator through a GUI.

2. The coordinatorAgent then accesses the database within the Knowledge
Management Subsystem (KMS). The database contains information about
previous course schedules including instructor assignments, teaching preferences,
preferred class timings, and student enrollment. For existing courses, the
coordinatorAgent utilizes the course information already present in the KMS. For
new courses, or courses that require an instructor or schedule change from

Figure 3: Schematic of operation for an IAEDS course scheduling system

Administrator

Administrator’s Machine
(Home Location)

Instructor #1’s
Office Machine

Scheduler Agent

Instructor #3’s
Office Machine

GUI

3. Create
and Dispatch
Scheduler Agents

1.Get
Course Information

Knowledge
Management
Subsystem

 4. Travel to
 Instructor #1’s
Office Machine

GUI

5. Interact with
Interface Aglet
On Instructor’s
Machine

Travel to
Instructor #2’s
Office MachineTravel to

Instructor #3’s
Office Machine 6. Get

 Preferences
from Instructor

Return Home

Instructor

Return
Home

Instructor #2’s
Office Machine

Return
Home

Coordinator Agent

Interface Agent

Scheduler Agent

2. Create Preliminary
Course Schedule

Intelligent
Applet
Base

Learning
Engine

Input from
different GUIs

Input from
different agents

Create
Intelligent
Applets

Retrieve Applet
based on user
characteristics

Adaptive DSS Using Intelligent Agents 71

previous offerings, the coordinatorAgent determines the instructor that is best
qualified to teach the course from the KMS.

3. After gathering the relevant information from the KMS, the coordinatorAgent
creates one mobile schedulerAgent for every instructor available during the
current term. The schedulerAgent carries within it the preliminary course
allotment for the instructor and information about other courses that the
instructor is eligible to teach for the current term.

4. When the schedulerAgent arrives on an instructor's machine, it interacts with a
stationary interfaceAgent on the machine and displays a preliminary course
allotment through a GUI. The instructor can respond in one of the following
ways:

• Accept all the course allotments without making any changes.
• Respond indicating the attributes such as time or classroom for one or

more courses that are unacceptable.
• Respond with a prioritized list of courses including courses that are not

allotted to the instructor, but the instructor is eligible to teach.
5. After the schedulerAgent obtains a response from the interfaceAgent of the

instructor site, it reverts to the administrator site.
6. After all the schedulerAgents that had been dispatched to the different instructors'

machines return to the administrator’s site, the coordinatorAgent extracts the
instructors' responses. At the end of this step, the instructors’ preferences from
the different instructors are available on the administrator site. The
coordinatorAgent then proceeds to resolve potential conflicts between the
different instructors’ preferences.

RESOLVING CONFLICTS BETWEEN INSTRUCTORS’ PREFERENCES

 Conflicts can arise between instructors’ preferences when two or more instructors
request simultaneous and exclusive access to the same resource such as courses,
classrooms, class timings, etc. For example, two or more instructors might prefer to teach
at the same time in the same room, multiple instructors might prefer to teach the same
course, or, an instructor might prefer to have more students in a course than the capacity
of the room allotted for the course. In all the above cases, the conflicts need to be
resolved so that the resources are requested uniquely by each instructor.
 We have identified the following two types of potential conflicts in our system:

1. Single Conflict: This type of conflict relates to a single preference.
2. Multi Conflict: This type of conflict exists across two or more preferences.

Multi-conflicts are more difficult to resolve than single conflicts. We should also resolve
single conflicts carefully by ensuring that the resolution does not create a new multi-
conflict.
 Conflict resolution between instructors’ preferences is done in two steps in our system
by a conflictResolutionAgent. The first step utilizes the domain rules that are contained
within the KMS along with an inferencing technique to identify and resolve conflicts.
Most single conflicts and some multi-conflicts can be resolved during this step. For
conflicts that still remain unresolved at the end of the first step, the
conflictResolutionAgent probabilistically selects one instructor preference out of a
conflicting set of preferences using a score based mechanism for preferences.

International Journal of Technology in Teaching & Learning 72

COURSE SCHEDULING DOMAIN RULES

 The rules in the KMS enforce operational constraints that ensure that different courses
in the current schedule satisfy certain criteria including timing requirements, enrollment
size restrictions, and also ensure that preferences from different instructors do not conflict
in content or schedule with one another. The entire set of rules and conflict resolution
among the preference is beyond the scope of this paper. Therefore, for describing the
operation of our system we have selected some basic rules for course scheduling as
shown below:

• Rule 1: If two instructors prefer the same classroom at the same time then
assign a different room for one of the instructors. If an alternate room is not
available at the same time then change the timing of one of the courses.

• Rule 2: If a classroom cannot hold the number of students an instructor
prefers in a course, then limit the enrollment size to the classroom’s capacity.

• Rule 3: Classes for graduate level courses must be two hours in duration and
must be taught in the evening, starting between 16:00 and 18:00 hours.

RESOLVING THE CONFLICTS USING THE DOMAIN RULES

 To illustrate the operation of our inferencing technique using the rules shown above
we have assumed that there are five instructors’ preferences, which have to be inspected
for potential conflicts. For simplicity, we have shown only the relevant attributes for
every preference in Table 3. In addition, it is assumed that the preferences relate to
courses taught on the same day.

Table 3. Instructors’ preferences from five different instructors.
Preference

ID
Instructor

ID
Course

ID
Room

Number

Timing
Enrollment

Size
Room

Capacity
Course
Level

1 I002 15368 352 16:00 25 10 Grad
2 I003 25678 352 18:00 45 20 Grad
3 I005 16872 158 08:00 38 30 Grad
4 I006 23417 352 16:00 20 40 Grad
5 I009 36128 278 16:00 30 50 Grad

 The conflicts for the instructors’ preferences shown in Table 3 are as follows:

• Conflict #1: For preferences 1, 2, 3 and 5 the preferred enrollment size is
greater than the room capacity of the allotted room. This violates rule 2. Each
of these preferences contains a single conflict because the unacceptable value
of the attribute enrollment size occurs only within its related preference.

• Conflict #2: The timing of the graduate class in preference 5 is at 8 am. This
is also a single conflict because it violates rule 3.

• Conflict #3: Preferences 1 and 4 occupy the same room at the same time and
violates rule 1. This is a multi conflict because each preference when
considered independently is acceptable but when the two preferences are
considered simultaneously, they represent a conflict.

 The single conflicts are first chosen by the conflictResolutionAgent and resolved. For
conflict #1, the preferred enrollment size in each preference is reduced to the room
capacity according to rule 1. This is a trivial resolution and no new multi-conflicts are
created due to the resolution. Similarly, conflict #2 is resolved by changing the time of
the course to an evening time. This resolution also does not create a new multi-conflict
with the existing preferences.

Adaptive DSS Using Intelligent Agents 73

 Next, the conflictResolutionAgent tries to resolve multi-conflict #3. The two courses
represented by preferences 1 and 4 cannot be offered simultaneously because they are
preferred to be taught at the same classroom at the same time. A trivial solution to the
problem can be to assign a later time such as 18:00 hours for one of the courses.
However, this creates another multi-conflict with preference 2.

 To illustrate the operation of our system for conflicts that cannot be resolved using
rule-based inferencing, let us assume that there are no other classrooms available at the
allowed times for preferences 1 and 4. Therefore, only one of the courses in preferences 1
and 4 can be offered. Conflicts of this type cannot be resolved using inferencing, instead
the conflictResolutionAgent determines a score for every preference. The relevant
attributes for the preference are represented as nodes in a graph while edges in the graph
represent the dependency between a pair of attributes. Each edge is associated with a
weight and a value for the dependency represented by the edge. The value of a
dependency is determined from the KMS. For example and as shown in Figure 4,
information about the instructor such as experience in teaching a particular course,
suitability of class timings and qualification to teach a particular course level are
contained within the table containing instructor information within the KMS. Similarly,
the suitability of the timing information for a course level is contained within the domain
rule base of the KMS. The human course administrator initially determines the weight
associated with an edge. These weights are adaptively learnt by the
conflictResolutionAgent and adjusted according to the course requirements. The score for
a preference is determined by the conflictResolutionAgent using the pseudo-code
algorithm shown in Figure 5. The preference that gets the highest score is selected as the
course to be offered in the final course schedule.
 After all the conflicts between the instructors’ preferences have been removed, the
preferences are ready to be allocated as the final course schedule. The coordinatorAgent
then creates a mobile courseAllotmentAgent that visits every instructor’s machine and
displays the courses and the related attributes assigned to the respective instructors.

Figure 4. Dependencies between selective attributes of a preference

Satisfies
Rule 3?

Instructor-id

Course-id Timing

Course Level

Experience
(# of years)

Qualification
(# of years)

Acceptable ?

Boolean valued
dependency

Numeric valued
dependency

Symbol Key

International Journal of Technology in Teaching & Learning 74

LEARNING ENGINE OF THE COURSE SCHEDULING SYSTEM

 The learning engine in our system is implemented by a learningAgent that accepts and
analyzes the responses from the schedulerAgents and updates different parameters related
to the performance of the system. The schedulerAgents that visit different instructor
machines collect different parameters including the response time required by instructors,
the variance between the preliminary course assignments and the preferences expressed
by each instructor, and the flexibility of instructors for teaching different courses. The
coordinatorAgent on the administrator’s site extracts these parameters and provides them
to the learningAgent. The learningAgent then attempts to improve and adapt these
parameters for use by future schedulerAgents created in the system. For example, from
the response times of different instructors the learningAgent can identify those instructors
that are slow in their response and for future course scheduling cycles, it can send
periodic reminders to them. The learningAgent can also use the variance in the
preliminary and final assignments to make preliminary course assignments more
intelligently in the future. Finally, by learning the degree of flexibility of different
instructors, the learningAgent can attempt to assign courses with variable content and
schedule to flexible instructors while limiting to standardized courses when responding to
the other instructors. The learningAgent therefore can improve the intelligence of
different agents used in the system by estimating various parameters involved in the
course scheduling process and, therefore, potentially increase the efficiency of the
system.

USER RESPONSE LOG AND INTELLIGENT APPLET BASE IN THE COURSE
SCHEDULING SYSTEM

 The interactions between the interfaceAgent and the human instructors on different
machines are stored in the user response log. The contents of the user response log are
reported to the learningAgent at certain intervals. The learningAgent can use these
responses to estimate the behavior of humans using the system. Behavior characteristics
can include frequently asked questions, GUI components that are used mostly and
commonly encountered problems. The learningAgent can then improve the interaction
with human users by creating slightly different versions of interfaces for different types

double calculatePreferenceScore (Graph g){

 score = 0.0;

 cond = conjunction of boolean valued dependencies;

 if (cond == true)

for every edge with numeric valued dependency

score = score + (weight of edge) * (value of dependency

Figure 5. Pseudo-code algorithm for calculating the score associated with a preference
represented as a graph.

Adaptive DSS Using Intelligent Agents 75

of users and storing them as Java applets in an intelligent applet base. The interfaceAgent
in the system can then select the appropriate applet from the intelligent applet base
depending on the user characteristics. For example, an instructor who is comfortable with
graphics is displayed an applet with a GUI that contains more graphics and less text as
compared to the default GUI. As another example, an applet that contains few
navigational instructions can be used to interact with veteran users of the system while
applets that contain various usage and navigational hints can be used for novices. The
intelligent applets improve the efficiency of the system by reducing the time required by
human users to learn and use the software. The variety of applets stored in the intelligent
applet base also improves the usability and satisfaction of the different types of human
users in the system.

Table 4. Mapping between the Course Scheduling and IAEDS Architecture.

Common Components Course Scheduling System
Graphical User
Interface

GUI for Administrator
GUI for Instructor’s machines

User Query module Logic behind the GUI

Agent Creation
Module

Creates the following agents:
Interface Agent
Scheduler Agent
Coordinator Agent

Agent Execution
Platform

Create and Dispatch Scheduler agents

User response log Stores Instructor’s responses.
Agent Repository

Stores the following agents for future reference:
Interface Agent
Scheduler Agent
Coordinator Agent

In
te

lli
ge

nt
 A

ge
nt

 L
ay

er

Learning Engine

Learning Engine
Creates Intelligent Applets based on user characteristics

Query Handler Query Handler:
Brings necessary information from the Knowledge Management
subsystem for the previous course schedules, existing agents in
database etc.

Knowledge
Management
Subsystem

Knowledge Management Subsystem

Data Management
Subsystem

Data Management Subsystem

D
ec

is
io

n
Su

pp
or

t L
ay

er

Model management
Subsystem

Model management Subsystem

CONCLUDING REMARKS

 With advancements in the fields of software agents and decision support systems, we
envisage that the development of systems combining these two fields will rapidly emerge
as an essential technology in the future. Augmenting decision support systems with
software agents gives the human user and/or machines the ability to complement
historical information with the knowledge acquired from the environment. In this paper,
we proposed a generic IAEDS system and demonstrated its architecture within the
problem domain of academic course scheduling. Table 4 illustrates the correspondence

International Journal of Technology in Teaching & Learning 76

between the generic proposed IAEDS architecture and the components of the course
scheduling system. This prototype academic instructor/course scheduling system
demonstrates various facets of the IAEDS architecture including the use of software
agents to combine real-time environmental data and decision rules with historical
knowledge to provide an adaptive and intelligent DSS.

In the future, we intend to enhance and improve the functionality of our prototype
system. For example, future extensions to the course scheduling system include a multi-
phase protocol for instructor consensus before finalizing the course schedule. In addition,
the research described in this paper also contributes to the development of adaptive
learning techniques and evolutionary algorithms, intelligent user-interfaces, integration of
software agents in DSS, and implementation of such systems. Finally, the IAEDS
architecture is potentially applicable to other more complex problem domains such as
transport management, financial portfolio management, commodity trading, and strategic
decision support during emergency and combat situations.

REFERENCES

Bigus, J., & Bigus, J. (2001). Constructing software agents using Java. New York: John

Wiley & Sons.
Blanco, J., & Khatib, L. (1998). "Course scheduling as a constraint satisfaction problem,"

Proceedings of PACT98-- The Fourth International Conference and Exhibition on
The Practical Application of Constraint Technology, Wednesday 25th March –
Friday 27th March, London, UK.

Bradshaw, J. M., Ed. (1997). Software agents. Cambridge, MA: MIT Press.
Bui, T., & Lee, J. (1999). An agent-based framework for building Decision Support

Systems. Decision Support Systems, 25(3), 225-237.
Burke, E. K., Elliman, D. G. & Weare, R. F. (1994). A university timetabling system

based ON graph colouring and constraint manipulation. Journal of Research on
Technology in Education, 27(1), 1-18.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1995). Specialised recombinative operators
for the timetabling problem. In T. C. Fogarty (Ed.), Evolutionary computing, AISB
workshop, UK, (Lecture Notes in Computer Science Series), Springer-Verlag
GmbH, 75-85.

Carter, M. W. (1986). A survey of practical applications of examination timetabling.
Operations Research, 34(2), 193-202.

Clemen, R. (1996). Making hard decisions: An introduction to decision analysis.
Belmont, CA: Duxbury Press.

Dasgupta, P, Narasimhan, N, Moser, L., & Melliar-Smith, P. M. (1999). MAgNET:
mobile agent based network electronic trading. IEEE Transactions in Knowledge
and Data Engineering, 24(6), 509-525.

Dasgupta, P., Moser, L., & Melliar-Smith, M. (2000). The security architecture for
MAgNET: A mobile agent e-commerce system. Proceedings of the Third
International Conference on Telecommunications and E-commerce, Dallas, TX,
289-298.

Dignum, F., Nuijten, W., & Janssen L. (1995). Solving a time tabling problem by
constraint satisfaction, Technical report, Eindhoven University of Technology.

Elmohamed, M., Coddington, P., & Fox G. (1998). A Comparison of Annealing
Techniques for Academic Course Scheduling. In Proceedings of the 2nd
International Conference on the Practice and Theory of Automated Timetabling
(Practice and Theory of Automated Timetabling), Syracuse, NY, 146-166.

Adaptive DSS Using Intelligent Agents 77

FIPAACL (2004). FIPA ACL message structure specification. Retrieved December 18th,
2004, from: http://www.fipa.org/specs/fipa00061.

Frangouli, H., Harmandas, V., & Stamatopoulos, P. (1995). UTSE: Construction of
Optimum Timetables for University Courses - A CLP based Approach. In
Proceedings of the 3rd International Conference on the Practical Applications of
Prolog PAP '95, Paris, 225—243.

Knapik, M., & Johnson, J. (1997). Developing intelligent agents for distributed systems:
Exploring architectures, techniques, and applications. Emeryville, CA: McGraw-
Hill Osborne Media.

Lange, D., & Oshima, M. (1998). Programming and deploying java mobile intelligent
with IBM aglets. Boston, MA: Addison-Wesley Publishing Inc.

Lewandowski G., & Condon A. (1996). Experiments with parallel graph coloring
heuristics and applications of graph coloring heuristics and applications of graph
coloring, Cliques, Coloring, and Satisfiability. In David S. Johnson and Michael A.
Trick (Eds.), Second DIMACS Implementation Challenge (DIMACS Series in
Discrete Mathematics and Theoretical Computer Science), Providence, RI:
American Mathematical Society, 26, 309—334.

Mallach, E., G. (2000). Decision support and data warehouse systems. New York:
McGraw-Hil1.

Marakas, G. (1998). Decision support systems in the 21st century. Upper Saddle River,
NJ: Prentice Hall.

Mitchell, T. (1997). Machine learning. New York: McGraw Hill.
Mora, M., Forgionne, G., & Gupta, J. (2002). Decision making support systems:

achievements, trends and challenges for the new decade. Hershey, PA: Idea Group
Publishing.

Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical
guide. Chichester, England: John Wiley & Sons.

Potok, T., Elmore, M., Reed, J., & Sheldon, F. (2003). VIPAR: Advanced information
agents discovering knowledge in an open and changing environment. In
Proceedings of the 7th World Multiconference on Systemics, Cybernetics and
Informatics Special Session on Agent-Based Computing, Orlando, FL, 28-33.

Power, D. J. (2000). "Web-based and model driven decision support systems: Concepts
and issues," In Proceedings of the Americas Conference on Information Systems,
Long Beach, CA.

Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach. Upper
Saddle River, NJ: Prentice-Hall.

Sahai, A., Billiart, S., & Morin, C. (1997). A portable and mobile manager for distributed
system management. In Proceedings of the Third Joint Conference on Information
Sciences, Raleigh, NC.

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135, 1-54.

Socha, K., Sampels M., & Manfrin M. (2003). Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art. In Proceedings of 3rd
European Workshop on Evolutionary Computation in Combinatorial Optimization,
Lecture Notes in Computer Science Series, Springer-Verlag, 2611, 334-345.

Stamatopoulos, P., Viglas, E., & Karaboyas, S. (1998). Nearly optimum timetable
construction through CLP and intelligent search. International Journal on Artificial
Intelligence Tools, 7(4), 415-442.

Turban, E., & Aronson, J. E. (2001). Decision support systems and intelligent systems.
Upper Saddle River, NJ: Prentice Hall.

Weiss, G., (1999). Multiagent systems. Cambridge, MA: MIT Press.

International Journal of Technology in Teaching & Learning 78

Wooldridge, M. (2002). An introduction to multiagent systems. Chichester, England:
John Wiley & Sons.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	2005

	Adaptive Decision Support for Academic Course Scheduling Using Intelligent Software Agents
	Prithviraj Dasgupta
	Deepak Khazanchi
	Recommended Citation

	Microsoft Word - Dasgupta&Khazanchi.Vol1.Iss2.PubFormat.doc

