
 1

SURVEY OF DYNAMIC SCHEDULING
IN MANUFACTURING SYSTEMS

1Ouelhadj D., 2Petrovic S.

1, 2 Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science and IT,

University of Nottingham, Nottingham NG8 1BB, UK.

ABSTRACT

The problem of scheduling is concerned with searching for optimal (or near-optimal) schedules subject to a

number of constraints. A variety of approaches have been developed to solve the problem of scheduling.

However, many of these approaches are often impractical in dynamic real-world environments where there

are complex constraints and a variety of unexpected disruptions. In most real-world environments,

scheduling is an ongoing reactive process where the presence of real-time information continually forces

reconsideration and revision of pre-established schedules. Scheduling research has largely ignored this

problem, focusing instead on optimisation of static schedules. This paper outlines the limitations of static

approaches to scheduling in the presence of real-time information and presents a number of issues that have

come up in recent years on dynamic scheduling.

The paper defines the problem of dynamic scheduling and provides a review of the state of the art of

currently developing research on dynamic scheduling. The principles of several dynamic scheduling

techniques, namely, dispatching rules, heuristics, meta-heuristics, artificial intelligence techniques, and

multi-agent systems are described in detail, followed by a discussion and comparison of their potential.

Key words: dynamic scheduling, robust scheduling, reactive scheduling, real-time events.

1. INTRODUCTION

Scheduling is defined as the allocation of resources to jobs over time. It is a decision-making process with

the goal of optimising one or more objectives (Pinedo, 1995). The objectives can be the minimisation of the

completion time of jobs, mean flow time, lateness of jobs, processing cost, etc.

Scheduling plays an important role in many manufacturing and production systems. Scheduling problems,

which are concerned with searching for optimal (or near-optimal) predictive schedules subject to a number of

constraints, are mostly NP-hard. So far, research has primarily been focused on finding optimal (or near-

optimal) solutions for static models with respect to various measures, i.e. shortest total processing time,

minimal production cost, etc. These approaches mostly have used the implicit assumption of static

environments without any kind of failures. Extensive literature reviews on static deterministic scheduling can

be found in (Weirs, 1997; Jain and Meeran, 1999; Pinedo, 1995, 2002). Predictive scheduling is an integral

1 dxs@cs.nott.ac.uk, Tel: +44 (0)115 9514210. Fax: +44 (0)115 951 4254.
2sxp@cs.nott.ac.uk, Tel: +44 (0)115 9566527. Fax: +44 (0)115 951 4249.
*Research supported by EPSRC grant number GR/N04225/01, DASH associates and a committee of vice chancellors and Principals ORS award.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579840?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

part of production systems planning for many reasons (Shafaei and Brunn, 1999b; Vieira et al., 2003). A

predictive schedule serves as an overall plan upon which many other shop activities are based. Examples of

such activities include short-term labour planning, ordering and preparation of raw material, and planning for

tooling, set-up activities, etc. It can enable better coordination by properly planning the timing of shop floor

activities to increase productivity and minimise operating costs. A predictive schedule can identify resource

conflicts, control the release of jobs to the shop, and ensure that required raw materials are ordered in time. It

gives shop floor personnel an explicit statement of what should be done so that managers can measure their

performance. Unfortunately, most manufacturing systems operate in dynamic environments where usually

inevitable unpredictable real-time events may cause a change in the scheduled plans, and the optimal or near-

optimal schedules with respect to the estimated data may become obsolete when they are released to the shop

floor. Examples of such real-time events include machine failures, arrival of urgent jobs, due date change,

etc. MacCarthy and Liu (1993) addressed the nature of the gap between the scheduling theory and scheduling

practice, the failure of classical scheduling theory to respond to the needs of practical environments, and

recent trends in scheduling research which attempt to make it more relevant and applicable. Shukla and Chen

(1996), in their comprehensive survey on intelligent real-time control in flexible manufacturing systems,

stated that comparison of theory and scheduling practice showed very little correspondence between the two.

Cowling and Johanson (2002) addressed an important gap between scheduling theory and practice, and

stated that scheduling models and algorithms are unable to make use of real-time information.

Until very recently the problem of scheduling in the presence of real-time events, termed dynamic

scheduling, has been largely neglected and not many surveys have been done in this area. In this paper, we

focus on a number of issues that have come up in recent years on dynamic scheduling in manufacturing

systems. We are primarily concerned with the issue of how to handle the occurrence of real-time events

during the execution of a given schedule on the shop floor.

The paper is organised as follows. Section 2 defines the categories of real-time events. Next, Section 3

defines the dynamic scheduling approaches. Section 4 describes discusses the rescheduling policies and

rescheduling strategies. Section5 gives a review on previous research work on techniques used to solve the

problem of dynamic scheduling, such as dispatching rules, heuristics, meta-heuristics, knowledge-based

systems, fuzzy logic, neural networks, hybrid techniques, and multi-agent based systems. Section 6 presents

a comparative study of the different techniques. Finally, summary and conclusions conclude the paper.

2. REAL-TIME EVENTS

Manufacturing environments are dynamic in nature and are subject to various disruptions, referred to as real-

time events, which can change system status and affect its performance. Literature on dynamic scheduling

has considered a significant number of real-time events and their effects considering various manufacturing

systems, including single machine systems, parallel machine systems, flow shops, job shops, and flexible

manufacturing systems.

Real-time events have been classified into two categories (Stoop and Weirs, 1996; Suresh and Chaudri,

1993; Cowling and Johanson, 2002; Vieira et al., 2003):

 3

• Resource-related: machine breakdown, operator illness, unavailability or tool failures, loading limits,

delay in the arrival or shortage of materials, defective material (material with wrong specification), etc.

• Job-related: rush jobs, job cancellation, due date changes, early or late arrival of jobs, change in job

priority, changes in job processing time, etc.

3. DYNAMIC SCHEDULING APPROACHES

Dynamic scheduling has been defined under four categories (Mehta and Uzsoy, 1999; Vieira et al., 2000a,

2003; Aytug et al., 2005; Leus and Herroelen, 2005): completely reactive scheduling, predictive-reactive

scheduling, robust predictive-reactive scheduling, and robust pro-active scheduling.

3.1. Completely Reactive Scheduling

In completely reactive scheduling no firm schedule is generated in advance and decisions are made locally in

real-time. Priority dispatching rules are frequently used. A dispatching rule is used to select the next job with

highest priority to be processed from a set of jobs awaiting service at a machine that becomes free. The

priority of a job is determined based on job and machine attributes. Dispatching rules are quick, and are

usually intuitive and easy to implement. However, global scheduling has the potential to significantly

improve shop performance compared to localised or myopic dispatching rules, where it is hard to predict

system performance as decisions are made locally in real-time. A detailed description of dispatching rules is

presented in sub-section 5.1.

3.2. Predictive-reactive Scheduling

Predictive-reactive scheduling is the most common dynamic scheduling approach used in manufacturing

systems. Most of the definitions reported in the literature on dynamic scheduling refer to predictive-reactive

scheduling. Predictive-reactive scheduling is a scheduling/rescheduling process in which schedules are

revised in response to real-time events. Predictive-reactive scheduling is a two step process. First, a

predictive schedule is generated in advance with the objective of optimising shop performance without

considering possible disruptions on the shop floor. This schedule is then modified during execution in

response to real-time events.

3.3. Robust Predictive-reactive Scheduling

Most of the predictive-reactive scheduling strategies are based on simple schedule adjustments which

consider only shop efficiency. The new schedule may deviate significantly from the original schedule, which

can seriously affect other planning activities that are based on the original schedule and may lead to poor

performance of the schedule. It is therefore desirable to generate predictive-reactive schedules that are

robust. Robust predictive-reactive scheduling focuses on building predictive-reactive schedules to minimise

the effects of disruption on the performance measure value of the realised schedule (Wu et al., 1991, 1993;

 4

Leon et al., 1994). Even though the need to create a robust schedule was recognised over two decades ago by

Graves 1981 (Daniels and Kouvelis, 1995), there is little research in the literature to find out how a robust

schedule can be generated in a dynamic environment. A typical solution to this problem is to reschedule

considering both shop efficiency and deviation from the original schedule (stability) simultaneously.

Stability measures the deviation from the original predictive schedule caused by schedule revision to

quantify the undesirability of making changes to the initial schedule (Wu et al., 1991, 1993; Cowling and

Johansson, 2002; Leus and Herroelen, 2005). Wu et al. (1991, 1993) defined a bi-criterion robustness

measure for one-machine rescheduling problem with machine breakdown. The criteria include the

minimisation of the makespan (schedule efficiency) and the impact of schedule change (schedule stability).

For the stability, they investigated two measures: the deviation from the original job starting times, and the

deviation from the original sequence. Their experimental results showed the effectiveness of the robustness

measure in that the schedule stability can be increased significantly with little or no reduction in makespan.

In the same order of idea, Abumaizar and Svestka (1997) used two measures to define a robust schedule:

efficiency (makespan) and stability measures (starting time deviation and sequence deviations). The

scheduling objective is to maximise shop efficiency, and at the same time minimise system impact caused by

schedule changes. Jensen (2001) investigated different robustness measures to improve tardiness and total

flow-time for machine breakdowns. Leon et al. (1994) developed robustness measures and robust scheduling

to deal with machine breakdowns and processing time variability in the case where a right-shift repair

strategy is used. The robustness is defined as the minimisation of the bi-criterion objective function

expressed in terms of both expected makespan and expected delay. The expected delay is the deviation

between the deterministic makespan before disruption, and the actual makespan after applying right shifting.

The experimental results showed that robust schedules significantly outperform schedules based on

makespan alone. Daniels and Kouvelis (1995) defined robustness measures for a single machine environment

to cope against processing time uncertainty where the scheduling objective is to minimise the flow time of

jobs. The robustness is defined as the minimisation of both the flow time and the absolute deviation from the

original schedule caused by schedule revision. Extensive computational results reported the efficiency and

effectiveness of the proposed robustness measures. Recently Cowling and Johanson (2002) and Ouelhadj et

al. (2003b) defined general measures of utility and stability to guide the decision as what strategy should be

used to react to real-time events in order to define a robust schedule. Utility measures the change in the value

of the schedule objective function following the schedule revision. It is expressed by the difference between

the value of the objective function of the new schedule after reacting into the real-time events and the

objective function of the predictive schedule before taking into account real-time events. They have then

investigated a number of utility and stability measures for single machine scheduling model with the

objective of minimising the average completion time.

3.4. Robust Pro-active Scheduling

Robust pro-active scheduling approaches focus on building predictive schedules which satisfy performance

requirements predictably in a dynamic environment (Mehta and Uzsoy, 1999; Davenport et al., 2001; Vieira

et al., 2003). The main difficulty of this approach is the determination of the predictability measures. Mehta

 5

and Uzsoy (1999) proposed a predictable scheduling model for a single machine subject to breakdowns with

the objective to minimise the maximum lateness. The effect of disruption is measured by the deviation of the

realised job completion time of the realised schedule from its planned completion time in the predictive

schedule. The deviation is reduced by inserting additional time in the predictive schedule with the objective

of achieving high predictability. Extensive computational experiments showed that predictable scheduling

provides significant improvement in predictability at the expense of very little degradation in the maximum

lateness. O’Donovan et al. (1999) extended the predictable scheduling approach of Mehta and Uzsoy where

the measure of schedule performance is the tardiness of jobs. In the same order of idea, Davenport et al.

(2001) examined a variety of strategies for generating robust pro-active schedules in job shops based on the

insertion of temporal slack with the objective to minimise the job tardiness. The central idea is to provide

each operation of a job with extra predictable processing time to absorb some level of uncertainty without

rescheduling.

4. RESCHEDULING IN THE PRESENCE OF REAL-TIME EVENTS

Rescheduling in the presence of real-time events needs to address two issues: when and how to react to real-

time events. The first issue addresses the problem of when to reschedule, and the second issue concerns the

definition of rescheduling strategies to react to real-time events.

4.1. When to Reschedule

Regarding the first issue, when to reschedule, three policies have been proposed in the literature

(Sabuncuoglu and Bayiz, 2000; Vieira, et al., 2003): periodic, event driven, and hybrid. The periodic and

hybrid policies have received special attention under the name rolling time horizon (Church and Uzsoy,

1992; Ovacik and Uzsoy, 1994; Sabuncuoglu and Karabuk, 1999; Vieira et al. 2000a; Aytug et al., 2005). In

the periodic policy, schedules are generated at regular intervals, which gather all available information from

the shop floor. The dynamic scheduling problem is decomposed into a series of static problems that can be

solved by using classical scheduling algorithms. The schedule is then executed and not revised until the next

period begins, where the planning horizon is renewed by taking into account new information gathered from

the current shop floor status. The periodic policy yields more schedule stability and less schedule

nervousness. Unfortunately, following an established schedule in the face of significant changes in the shop

floor status may compromise performance since unwanted products or intermediates may be produced.

Determining the rescheduling period is also a difficult task.

The primary application of the rolling horizon approach to dynamic scheduling is due to Muhlemann et

al. (1982). They investigated how the frequency of scheduling in a dynamic job shop environment affected

the performance where the processing time variations and machine breakdowns may occur randomly. At

each rescheduling period, a static schedule for current jobs is generated by a dispatching rule. As anticipated,

performance generally deteriorates when the rescheduling period increases. Ovacik and Uzsoy (1994) used

the rolling horizon policy for a single machine dynamic scheduling problem with sequence-dependent set-up

 6

time to minimise maximum lateness. They found that rolling horizon scheduling outperforms myopic

dispatching rules. Sabuncuoglu and Karabuk (1999) studied the rescheduling frequency in a multi-process

flexible manufacturing system environment for machine breakdowns and processing time variations. The

performance of the system is measured for mean tardiness and makespan criteria. Their results on the

investigation on scheduling frequency indicated that a periodic response with an appropriate period length

would be sufficient to cope with real-time events. It was observed that machine breakdowns have more

significant impact on the system performance than processing time variations. Kim and Kim (1994) proposed

a mechanism that periodically monitored the system and ran a dispatching rule found by means of simulation

runs with multiple rules. If the difference between the actual performance, which deteriorates under machine

failures, and the estimated performance exceeds a given limit, then a new simulation run is performed to

select a new dispatching rule. The experiments show that the monitoring interval and performance limits

should be carefully designed to achieve better performances.

In Event driven policy rescheduling is triggered in response to an unexpected event that alters the current

system status. Most of the approaches to dynamic scheduling use this policy. Yamamoto and Nof (1985)

studied the event driven rescheduling policy for job shop scheduling environment with random machine

breakdowns. Rescheduling is triggered whenever a machine breakdown occurs. The results indicated that

event driven rescheduling with lower computational burden and higher predictability outperforms the

sequencing periodic policy and dispatching rules. Vieira, et al. (2000a) described analytical models to

estimate the performance of a single machine system under periodic and event-driven rescheduling strategies

in an environment where jobs arrive dynamically. They proposed to evaluate the performance of periodic

rescheduling and event driven rescheduling using analytical models that can easily and quickly estimate

important performance measures, such as average flow time and machine utilisation. Vieira et al. (2000b)

extended that study by investigating parallel machine systems. It was shown that rescheduling frequency can

significantly affect the system performance (average flow time). A lower rescheduling frequency lowers the

number of set ups. A higher rescheduling frequency allows the system to react more quickly to disruptions

but may increase the number of set-ups. All these studies agreed that the event driven rescheduling is much

better than periodic rescheduling.

A hybrid policy reschedules the system periodically and also when an exception occurs. Events usually

considered are machine breakdowns, arrival of urgent jobs, cancellation of jobs, or job priority changes.

Church and Ozsoy (1992) developed a hybrid event-driven rescheduling policy for rescheduling in a single-

machine and parallel machine environment with dynamic job arrivals. Their system does rescheduling

periodically. Events classified as regular occurring between periodic rescheduling are ignored until the next

rescheduling moment. However, when an event is classified as urgent, complete rescheduling is immediately

performed. The results indicated that the performance of periodic scheduling deteriorates as the length of

rescheduling period increases, while event driven method achieves a reasonably good performance.

 7

4.2. Rescheduling Strategies

Regarding the second issue, what strategies to use to reschedule, the literature provided two main

rescheduling strategies (Sabuncuoglu and Bayiz, 2000; Cowling and Johanson, 2002; Vieira et al., 2003):

schedule repair and complete rescheduling. Schedule repair refers to some local adjustment of the current

schedule and may be preferable because of the potential saving in CPU times and the stability of the system

is preserved. Section 5.2 presents examples of schedule repair strategies.

 Complete rescheduling regenerates a new schedule from scratch. Complete rescheduling might, in principle,

be better in maintaining optimal solutions, but these solutions are rarely achievable in practice and require

prohibitive computation time. Moreover, complete rescheduling can result in instability and lack of

continuity in detailed plant schedules, leading to additional production costs attributable to what has been

termed shop floor nervousness.

Sun and Xue (2001), and Dorn et al. (1995a) reported that most of the reactive scheduling systems

attempt to revise only part of the originally created schedule for responding to the production environment

changes without rescheduling from scratch. Abumaizar and Svestka (1997) stated that in practice

rescheduling has been done by schedule repair. While complete rescheduling has been used also to a limited

degree. Sabuncuoglu and Bayiz (2000) demonstrated the potential effectiveness of schedule repair in terms

of stability and CPU time compared with complete rescheduling.

Another problem of practical importance is the decision whether to reschedule from scratch (complete

rescheduling) or schedule repair, and which schedule repair strategy to choose to react to real-time events. To

deal with this problem, simulation and robustness measures were used to evaluate the performance of the

rescheduling strategies and to select the best strategy. Wu et al. (1991, 1993), Daniels and Kouvelis (1995),

Abumaizar and Svestka (1997), Jensen (2001) used robustness measures (efficiency and stability) to decide

on the best rescheduling strategy to apply. Cowling and Johansson (2002) and Ouelhadj et al, (2003b) used

utility and stability measures to assess the performance of various schedule repair and complete rescheduling

strategies, and to select the best rescheduling strategy. Examples of applications of simulation are presented

in Subsection 4.4.1.

5. DYNAMIC SCHEDULING TECHNIQUES

Dynamic scheduling has been solved using the following techniques (Suresh and Chaudhuri, 1993; Shukla

and Chen, 1996; Stoop and Weirs, 1996; Brandimarte and Villa, 1999): dispatching rules, heuristics, meta-

heuristics, artificial intelligence techniques, and multi-agent systems.

5.1. Dispatching Rules

Dispatching rules have played a significant role within dynamic contexts. Over the years, a variety of simple

and complex dispatching rules have been proposed in the literature. It was found that no rule performs well

for all for all criteria. Hence many investigations were carried out towards recognising a combination of

several dispatching rules to find a range of system states in which the relative performance of each rule is

 8

highest. In order to assess the performance of various dispatching rules dynamically under different dynamic

and stochastic conditions of the shop floor, simulation was used. Simulation allows the execution of several

dispatching rules, and the rule that yields the best performance is selected. A number of authors have used

simulation to evaluate the performance of dispatching rules. Ramasesh (1990), Rajendran and Holthaus

(1999) presented excellent state-of-the-art surveys of dispatching rules in dynamic job shops and flow shops.

They evaluated the performance of a variety of dispatching rules with respect to some common performance

criteria discussed in literature, such as variance of flow time, minimum and maximum flow time, mean

tardiness, maximum tardiness and variance of tardiness, etc. They classified these rules into fives categories:

rules involving process times, rules involving due dates, simple rules involving neither process times nor due

dates, rules involving shop floor conditions, and rules involving two or more of the first four categories. It

has been observed that no single rule performs well for all important criteria related to flow time and

tardiness of jobs. In general, it has been noted that process time based perform better under tight load

conditions, while due date based rules perform better under light load conditions. Holthaus (1999) presented

a simulation-based analysis of dispatching rules for scheduling in job shops with machine breakdowns. With

respect to flow time and due date based objectives, the relative performance of well known and the new

dispatching rules proposed were evaluated for different settings of the model parameters. The results

revealed that the relative performance of scheduling rules can be affected by changing the breakdown

parameters. Sabuncuoglu (1998) presented a comprehensive simulation study on scheduling rules for flexible

manufacturing systems in the presence of various levels of breakdown rates and changes in processing times.

He reported that no single rule is the best under all possible conditions. A comprehensive bibliography is

also presented in the paper. Shafaei and Brun (1999a) in their simulation study investigated the performance

of a number of scheduling rules for a dynamic job shop. Their performance measure considered is an

economic objective, which includes the main costs involved in a scheduling decision. Kutanoglu and

Sabuncuoglu (1999) presented a comprehensive comparative study of more than twenty dispatching rules in

a dynamic job shop with weighted tardiness criterion for dynamic job arrivals. Kim and Kim (1994) and

proposed a simulation-based scheduling system with two major components: a simulation mechanism and a

reactive control mechanism. The simulation mechanism evaluates various rules and selects the best one. The

reactive control mechanism monitors the system operation periodically and determines the timing of the new

simulation runs. Jeong and Kim (1998) used simulation and dispatching rules for real-time scheduling of a

flexible manufacturing system in the presence arrivals of urgent jobs, machine breakdowns, and tool

breakage. Simulation evaluates the dispatching rules and the scheduler based on this evaluation selects the

best dispatching rule, which satisfies the requested criteria. Kutanoglu and Sabuncuoglu (2001) used

simulation to investigate the performance of various schedule repair heuristics based on rerouting the jobs to

their alternative machines (no rerouting, queue rerouting, arrival rerouting, and all rerouting) for unexpected

machine failures in dynamic job shops. The experimental results showed that the proper selection of a good

schedule repair heuristic is based not only on the system characteristics (utilisation, machine down times, and

frequency of machine failures) but also on the material handling system in terms of speed and number of

material handling system devices.

 9

5.2. Heuristics

Heuristics in this context are problem specific schedule repair methods, which do not guarantee to find an

optimal schedule, but have the ability to find reasonably good solutions in a short time. The most common

schedule repair heuristics are: right-shift schedule repair, match-up schedule repair, and partial schedule

repair. The Right-shift heuristic shifts the remaining operations schedule forwards in time by the amount of

downtime in the event of machine failure. Match-up schedule repair strategy reschedules to match-up with

the pre-schedule at some point in the future. Partial schedule repair reschedules only the operations in failure.

Yamamoto and Nof (1985) investigated the performance of the right-shift heuristic compared with

dispatching rules and complete rescheduling using branch and bound. The experimental results showed that

right shifting outperforms priority rules and complete rescheduling. Mehta and Uzsoy (1999) and O'Donovan

et al. (1999) used the right-shift heuristic for inserting idle time to define predictable schedules. Abumaizar

and Svestka (1997) compared the performance of partial schedule repair (affected operations schedule

repair), complete rescheduling, and right shift schedule repair with respect to measures of efficiency

(makespan) and stability (deviation from the initial schedule). The partial schedule repair heuristic

reschedules only the operations directly and indirectly affected by the disruption so as to minimise both the

increase in makespan and the deviation from the initial schedule. The results demonstrated that the affected

operations heuristic reduces much of the deviation and computational complexity associated with complete

rescheduling and right shifting. Right shifting gives the worst performance with respect to makespan due to

the fact that this method is a simple shifting of the schedule by the amount of the disruption. Thus, the longer

the disruption, the larger the expected shift, and the greater the increase in makespan.

Bean et al. (1991) proposed a match-up schedule repair heuristic for the shop floor rescheduling with

multiple resources in the presence of machine breakdowns. The strategy reschedules to match up with the

pre-schedule at some point in the future whenever machine breakdown occurs. Their experimental results

showed that this method provides near-optimal solutions while achieving higher predictability than complete

rescheduling. Later, Akturk and Gorgulu (1999) applied this approach for flow shop rescheduling. The

results indicated that the match-up heuristic is very effective in terms of schedule quality, computation time,

and schedule stability.

A variety of more specific schedule repair heuristics have been also proposed in the literature. Nof and

Grant (1991) proposed several rescheduling strategies for process time variations, machine breakdown, and

new job arrival in a manufacturing cell. The rescheduling strategies are: rerouting the jobs to alternative

machines, job-splitting (for batch production), and complete rescheduling. Kutanoglu and Sabuncuoglu

(2001) proposed several schedule repair heuristics in the presence of machine failures. These schedule repair

heuristics are based on rerouting the jobs to their alternative machines. Lee and Uzsoy (1999) considered the

problem of minimising makespan on a single batch-processing machine for oven scheduling in a

semiconductor-manufacturing environment with dynamic job arrivals. They proposed and evaluated the

performance of two schedule repair heuristics, delay schedule repair heuristic (delays the processing of a

batch to integrate jobs arriving very soon in the future), and update schedule repair heuristic (updates the

release time of the job to delay in the batch). The results indicated that the heuristics showed an excellent

 10

average performance with a modest computational burden. Jain and Elmaraghy (1997) proposed various

schedule repair heuristics for production rescheduling in flexible manufacturing systems for machine

breakdown, arrival of rush jobs, increased job priority and job cancellation. When a machine breakdown

occurs, the remaining operations are performed on alternative machines. For arrival of new jobs, if the new

job is not a rush job, then priority is assigned based on EDD (Earliest Due Date) or FCFS (First Come First

Served) dispatching rules, otherwise highest priority is assigned to it and all the disturbed tasks are moved

forward in time. When a job priority is increased or a job is cancelled the remaining tasks are shifted forward

in time on their respective machines.

5.3. Meta-heuristics: Tabu search, Simulated Annealing, and Genetic Algorithms

In recent years, meta-heuristics (tabu search, simulated annealing and genetic algorithms) have been

successfully used to solve production scheduling problems. Meta-heuristics are high level heuristics which

guide local search heuristics to escape from local optima (Reeves, 1995; Glover and Laguna, 1997; Pham

and Karaboga, 2000). Local search heuristics are neighbourhood search methods based on the idea of

searching neighbourhoods. In local neighbourhood search, the search starts from some given solution, and

tries iteratively to move to a better solution in an appropriately defined neighbourhood of the current solution

using move operators. The search process stops when no better solution can be found in the neighbourhood

of the current solution, which is the local optimum. Meta-heuristics such as tabu search, simulated annealing

and genetic algorithms improve the local search algorithms to escape local optima by either accepting worse

solutions, or by generating good starting solutions for the local search in a more intelligent way than just

providing random initial solutions.

Tabu search, genetic algorithms, and simulated annealing have been widely used to solve static

deterministic production scheduling problems in several domains including job shops, open shops, flows-

hops, flexible manufacturing systems, batch processing, etc. However, little research work has addressed the

use of meta-heuristics in dynamic scheduling. Dorn et al. (1995a) and Zweben et al. (1994) discussed the

importance of using meta-heuristics to schedule repair instead of using local search or simple heuristics as

they can be trapped in a poor local optimum. Mehta and Uzsoy, 1999) used tabu search to search for

predictable schedules. Dorn et al. (1995a) used tabu search to repair a schedule caused by uncertain time

processes in steel continuous caster scheduling. Zweben et al. (1994) used simulated annealing to repair

schedules for space shuttle ground operations. To repair a schedule, the system chooses between five repair

heuristics using a choice-function, and applies simulated annealing search to perform multiple repair

iterations. It was found that tabu search and simulated annealing generate good quality schedules in a short

time of period.

Chryssolouris and Subramaniam (2001) used genetic algorithms for dynamic scheduling of

manufacturing job shops in the presence of machine breakdown and alternate job routine. Two performance

measures, namely mean job tardiness and mean job cost, were used. Whenever a dynamic event occurs,

genetic algorithms are used to propose an alternative schedule. In addition, the solution of genetic algorithms

was compared to several common dispatching rules. The results indicated that the performance of genetic

 11

algorithms is significantly superior to that of the common dispatching rules. Rossi and Dini (2000) used

genetic algorithms for dynamic batch scheduling of flexible manufacturing systems. They considered the

following real-time events: arrival of a new batch, unavailability of parts to be machined (due to the failure

of feeding systems, the presence of defects on work pieces, etc.), and machine breakdowns (due to

unavailability of tools, unplanned maintenance, etc.). Schedules produced using dispatching rules were

improved using genetic algorithms. The results showed that genetic algorithms greatly reduce the makespan.

Leon et al. (1994) and Jensen (2001) used genetic algorithms to generate robust schedules and to evaluate the

performance of various robustness measures. Wu et al. (1991, 1993) compared the performance of genetic

algorithms and local search heuristics to generate robust schedules. The results showed the performance of

genetic algorithms in generating schedules with much better makespan and stability than local search

heuristics. However, Bierwirth and Mattfeld (1999) reported in their experimental results that the capabilities

of genetic algorithms vanish with an increasing problem size, and they are not efficient to find a near-optimal

solution in a reasonable time.

5.4. Artificial Intelligence Techniques

A number of dynamic scheduling problems have adopted artificial intelligence techniques such as

knowledge-based-systems, neural networks, case-based reasoning, fuzzy logic, Petri nets, etc. which are

discussed below.

The basic motivation of knowledge-based approaches is that there is a wide variety of technical

expertise on the corrective actions to undertake in the presence of real-time events. Knowledge-based

systems focus on capturing the expertise or the experience of the expert in a specific domain and an inference

mechanism is used to derive conclusions or recommendations regarding the corrective action to undertake.

ISIS (Fox, 1994; Smith, 1995) developed at Carnegie Mellon in 1982, was the first attempt to use

knowledge-based systems in production job shop scheduling. ISIS performs a constrained-direct search to

derive a schedule. The dynamic situations are handled by rescheduling the affected jobs by selectively

relaxing some of the constraints. OPIS (Smith, 1994) is a successor of ISIS. OPIS is a knowledge-based

system developed originally for manufacturing production scheduling which uses an opportunistic problem

solving process to incrementally generate and revise schedules in response to changes. OPIS implemented a

blackboard architecture wherein a set of distinct heuristics, referred to as knowledge sources, are selectively

employed to generate and revise the overall schedule. The schedule repair heuristics defined in OPIS are: job

scheduler, resource scheduler, right-shifter, left-shifter, and demand swapper. IOSS (Park et al., 1996) is

another interactive scheduling knowledge-based scheduling system based on opportunistic and interactive

repair-based problem solving within blackboard architecture. SONIA (Le Pape, 1994) is a knowledge-based

job-shop predictive-reactive scheduling system. Various schedule repair heuristics were defined such as

relaxing due dates, extending work shifts, operation postponed until the next shift and reduction of idle times

of resources by permuting operations. Some researchers combined knowledge-based systems and simulation

to pursue a richer modelling capacity of scheduling to decide on the best corrective actions to handle the real-

time events Belz and Mertens (1996). Some knowledge-based systems were developed to assist the user to

 12

react interactively to real-time events (Dutta, 1990; Sarin and Salgame, 1990; Henning and Cerda, 2000;

O'Kane, 2000).

Other artificial intelligence techniques that have been used to solve the problem of dynamic scheduling

are the following: case-based reasoning, neural networks, petri nets, and fuzzy logic. Extensive discussions

of these techniques can be found in (Suresh and Chaudhuri, 1993; Szelke and Kerr, 1994; Zweben and Fox,

1994; Kerr and Szelke, 1995; Meziane et al., 2000).

To derive better dynamic scheduling systems, some researchers developed hybrid systems which combine

various artificial intelligence techniques. Miyashita and Sycara (1995) developed the framework CABINS

for schedule repair in a job shop using case-based reasoning. Cases represent the repair context and suitable

repair actions. Case based reasoning allows capturing and re-use of this knowledge to repair similar

situations. The schedule is repaired incrementally, when necessary, using the cases stored in the system.

Jahangirian and Conroy (2000), and Li et al. (2000) developed a hybrid framework for dynamic scheduling

consisting of a knowledge-base describing the dispatching rules, a simulation module to evaluate the

performance of the dispatching rules, an artificial neural network, and genetic algorithms which allow

machine learning techniques to tailor the approaches to specific problem instances. Dorn (1995b) used case-

based reasoning and fuzzy logic for reactive scheduling of the continuous caster in the steel industry.

Schmidt (1994) used fuzzy logic to diagnose critical jobs in order to reschedule them. As a result, the

decision-maker on the shop floor gets the information concerning which jobs must be rescheduled now,

soon, later or probably not at all. Dorn (1994) used fuzzy logic for dynamic scheduling of steel continuous

casting. A fuzzy logic based decision support system for parallel machine scheduling and rescheduling in the

presence of uncertain disruptions in a pottery company was presented in (Petrovic and Duenas, 2006). The

uncertain disruption considered was material shortage, described by the number of disruption occurrences

and disruption repair period. These parameters were specified imprecisely and modelled and combined using

fuzzy sets and level 2 fuzzy sets, respectively. Sugeno type fuzzy rules were proposed to determine when to

reschedule and which rescheduling method to use. Garetti and Taisch (1995) and Garner and Ridley (1994)

used knowledge-based systems and neural networks in reactive scheduling. The neural networks were used

to decide on the best set of dispatching rules when a real-time event occurs. Ruiz et al. (2001) proposed a

fault diagnosis system for reactive scheduling in multipurpose batch chemical plants. The system combines

the adaptive learning diagnostic procedure of neural networks and a knowledge-based expert system.

5.5. Multi-agent-based Dynamic Scheduling

Most of the scheduling and control systems developed in industrial environments have traditionally been

viewed as a top-down process of command and response that relies heavily on centralised and hierarchical

models (Parunak, 1996; Gou et al., 1998; Shen and Norrie, 1999; Bongaerts et al., 2000; Shen et al., 2001).

To ensure consistency of data across the entire enterprise, centralised and hierarchical scheduling systems

(Figures 1 and 2) rely heavily on central databases. To optimise performance, scheduling decisions are made

centrally at the level of the supervisor, and then distributed to the manufacturing resource level for execution.

 13

A common architecture gives a central computer responsibility for scheduling, dispatching resources,

monitoring any deviation, and dispatching corrective actions.

Centralised and hierarchical scheduling systems present a number of drawbacks (Parunak, 1996;

Tharumarajah and Bemelman, 1997; Shen and Norrie, 1999; Bongaerts et al., 2000; Brennan and Norrie,

2001). The primary drawback is the existence of a central computer, which constitutes a bottleneck that can

limit the capacity of the shop, and it is a single point of failure that can bring down the entire shop.

Furthermore, modifying the configuration of hierarchically controlled manufacturing systems is expensive

and time consuming as it involves expensive software rewriting. The hierarchical scheduling manufacturing

systems are becoming increasingly complex with the integration of manufacturing system components.

Another disadvantage is that the up and down flow of information increases the latency time of decision-

making. Moreover practical experience has indicated that hierarchical centralised scheduling systems tend to

have problems reacting to disturbances and may fail to respond effectively to the presence of real-time

events. When a disturbance occurs, it is fed back to the high level in the hierarchy, and only after the

scheduler has been adapted, the new schedule triggers a new flow of commands that forms the reaction to the

disturbance. This up and down movement of information results in a slow response time leading to a low

robustness. Despite the fact that centralised and hierarchical scheduling systems may provide globally better

schedules in environments where real-time disturbances are rare, increasingly they are being found to be

inefficient to respond to highly dynamic environments. Therefore, centralised and hierarchical scheduling is

complex, difficult to maintain and reconfigure, inflexible, costly, and slow to satisfy the needs of today's

complex manufacturing environments.

Global competitive pressure in manufacturing has resulted in fundamental changes in the operation of

manufacturing systems. Today's systems must rapidly adapt to disturbances while maintaining shorter

product cycles, improving productivity, and increasing operational flexibility. To face this challenge, the

current trend has been towards highly automated systems that are intended to offer robustness, stability,

adaptability, and efficient use of available resources through a modular and distributed design (Parunak,

 Resource
level

Supervisor
 level

Intermediate
levels

 Figure 2. Centralised hierarchical architecture Figure 1. Centralised architecture

Supervisor
 level

Resource
level

 14

1996; Brennan and Norrie, 2001; Shen et al., 2001). There is a growing trend towards distributed shop floor

organisations as a result of the need for enhanced levels of responsiveness from the shop floor to changes in

markets and technologies. The primary motivation in designing these systems is to decentralise the control of

the manufacturing system, thereby reducing the complexity and cost, increasing flexibility, and enhancing

fault tolerance.

There is a substantial evidence that multi-agent systems one of the most promising approach to building

complex, robust, and cost-effective next-generation manufacturing scheduling systems because of their

autonomous, distributed and dynamic nature, and robustness against failures (Parunak, 1996, 2000; Shen et

al., 2001; Brennan and Norrie, 2001). A Multi-Agent System is a network of problem solvers that work

together to solve problems that are beyond their individual capabilities O’Hare and Kennings (1996).The

use of multi-agent systems to solve the problem of dynamic scheduling is motivated by the following key

points (Parunak, 1996, 2000; Shen and Norrie, 1999; Cowling et al., 2000; Brennan and Norrie, 2001; Shen

et al., 2001). First, multi-agent-based scheduling systems recognise that data and control are distributed

through the factory. These systems are composed of autonomous agents attached to each physical or

functional manufacturing entity in the facility (resources, operators, parts, jobs, etc.). Local autonomy allows

the agents to take the responsibility for carrying out local scheduling for one or more entities in the

production process and to respond locally and efficiently to local variations, increasing the robustness and

the flexibility of the system. Secondly, these individual agents have considerable latitude in responding to

local conditions and interacting and cooperating with each other in order to achieve global optimal and

robust schedules. The overall system performance is not globally planned, but emerges through the dynamic

interaction of the agents in real-time. Thus the system emerges from the concurrent independent local

decisions of the agents. Thirdly, the software for each agent is much shorter and simpler than it would be for

a centralised approach, and as a result is easier to write, install and maintain. Furthermore, it is possible to

integrate new resources or remove existing ones with their attached agents to from the factory floor without

any changes in existing software in the shop, simply by connecting them to the factory network.

5.5.1. Agent-based Scheduling Architectures

An increasing number of enterprises are turning to agent technology to address the complex and dynamic

environments common to most enterprises and successful results have been achieved. Two main multi-agent

architectures for dynamic scheduling have been implemented: autonomous architectures and mediator

architectures. They are described in more detail in the following sub-sections.

5.5.5.1.1. Autonomous Architectures

In autonomous architectures (Figure 3), agents representing manufacturing entities such as resources and

jobs have the ability to define their local schedules, react locally to local changes, and cooperate directly with

each other to generate the global optimal and robust schedule.

 15

Yams (Yet Another Manufacturing System) (Parunak, 1987) is one of the earliest agent-based

manufacturing system which assigns an agent to each node in a control hierarchy (factory, cell, workstation,

machine, jobs). The main idea of Yams is that the job agents negotiate with resource agents to assign tasks to

the machine agents using the contract net protocol. Shaw (1988) developed a dynamic scheduling system in a

cellular manufacturing system. In their work a manufacturing cell agent could sub-contract work to other

cells through the contract net protocol (Smith, 1980). Request for bid messages are broadcast to cells, and

cells evaluate operations specification and submit bids, which describe their estimation on the earliest

finishing time or shortest processing time. The cell that optimises a predefined criterion is selected to

perform the operation. Goldsmith et al. (1998), Ouelhadj et al. (1998, 1999, 2000) proposed a simple multi-

agent architecture for dynamic scheduling in flexible manufacturing systems which involves only resource

agents. The resource agents are responsible for dynamic scheduling of the resources and they have no control

over each other. They negotiate using the contract net protocol to produce a global schedule. Each resource

agent performs the following functions: scheduling, detection, diagnosis and error handling. Resource agents

react locally to real-time events occurring on the corresponding resource using the corrective actions

described in a knowledge base. When real-time events occur, such as machine breakdown, the resource agent

renegotiates the jobs operations in failure to find alternative resource agents. For an increased flexibility and

robustness Sousa and Ramos (1999) proposed a multi-agent architecture for dynamic scheduling in

manufacturing systems which involves job and resource agents. The job agents negotiate the operations of

the job with the resource agents using the contract net protocol. When a resource agent detects a malfunction,

it sends a machine fault message to every job agent that has contracted its operations. On receiving the

machine fault message, the job agent renegotiates the operations in failure with other resource agents capable

of performing the operations. Cowling et al. (2001, 2003a, 2003b) and Ouelhadj et al. (2003a, 2003b)

proposed a novel multi-agent architecture for integrated and dynamic scheduling in steel production. Each

steel production process is represented by an agent, including the continuous caster agents, the hot strip mill

agent, the slabyard agent and the user agent. The hot strip mill and continuous caster agent perform the

Manufacturing
entities

Physical or
functional agents
(resources and/or

jobs, etc)

Figure 3. Autonomous architecture

 16

robust predictive-reactive scheduling of the hot strip mill and the continuous caster, respectively. Robust

predictive-reactive scheduling generates robust predictive-reactive schedules in the presence of real-time

events using utility, stability, and robustness measures and a variety of rescheduling heuristics.

Recently levelled commitment contracts were proposed as an extension of the contract net protocol for

increasing the economic efficiency of contracts between agents in the presence of incomplete information

about future events. Sandholm (2000) described a levelled commitment contracting protocol for automated

contracting in distributed manufacturing. The extended protocol allows self-interested agents to efficiently

accommodate future events by giving the possibility for each agent to decommit from the contract by simply

paying a de-commitment penalty to the other contract party. A de-commitment penalty is assigned to both

agents in a contract to be freed from the contract.

Some multi-agent-based scheduling systems used the auction and currency mechanisms for inter-agents

negotiation. Agents exchange resources for money at prices determined through communication of bids. Lin

and Solberg (1992, 1994) proposed an autonomous multi-agent architecture for shop floor dynamic

scheduling based on a currency model that combined the scheduling objectives and price mechanism. Their

model treats each job and resource as an agent. Job agents negotiate with resource agents via a contract net

bidding mechanism to optimise a weighted objective that is a function of due date, price, quality, and other

user defined factors. The part agent enters the system with certain currency and solicits and evaluates bids

from several resource agents capable of fulfilling the processing requirements and selects the one that

optimises its objective. Each resource agent sets its charging price based on its status, then it decides on the

basis of the currency offered which of the announced jobs to consider more interesting for a possible bid

submission. The job agent tries to minimise the price paid, but the resource agent's goal is to maximise the

price charged. Each deal is completed once the job and resource agents are mutually committed. When a

resource agent is in failure, it informs the corresponding job agent, and the latter proceeds to a renegotiation

process on the operations in failure with the resource agents. AARIA (Autonomous Agents for Rock Island

Arsenal) (Parunak et al., 1997) is an autonomous multi-agent architecture developed for scheduling in an

army manufacturing facility. Manufacturing resources, parts and people are encapsulated as autonomous

agents. The system incorporates features of schedule optimisation and fault recovery. Agents cooperate using

the currency negotiation protocol

Other multi-agent based dynamic scheduling systems used learning approaches for dynamic scheduling.

Aydin and Oztemel (2000) proposed a dynamic job shop scheduling using reinforcement learning agents.

The agent is trained by an improved reinforcement-learning algorithm through the learning stage and then

successfully makes the decisions to schedule the operations. The scheduling system consists of two parts: the

simulated environment and the intelligent agent. The agent selects the most appropriate priority rule to select

a job to assign to a machine according to the shop conditions, while simulated environment performs

scheduling activities using the rule selected by the agent. Pendharkar (1999) proposed multi-agent learning

approaches for dynamic scheduling. In the multi-agent architecture, the work areas are controlled by agents

with a knowledge base containing the dispatching rules and uses genetic algorithms-based learning to update

 17

the rules in the knowledge-base at periodic intervals of time. The higher frequency of learning may help an

agent to quickly adapt to variations on the shop floor.

4.5.1.1.2. Mediator Architectures

Despite the good performance of autonomous architectures, usually they face problems in providing globally

optimised schedules and predictability in the presence of a large number of agents, such as virtual enterprises

(Brennan and Norrie, 1998; Shen and Norrie, 1999; Bongaerts et al., 2000; Shen et al., 2001;Tharumarajah,

2001). Several researchers have proposed mediator architectures for dynamic scheduling in such complex

environments to combine robustness, optimality, and predictability.

A mediator architecture has a basic structure consisting of autonomous cooperating local agents that are

capable of negotiation with each other in order to achieve production targets (Gou et al., 1998; Shen and

Norrie, 1999; Bongaerts et al., 2000; Shen et al., 2001). This basic structure is extended with mediator agents

to coordinate the behaviour of the local agents to perform global dynamic scheduling, see Figure 4. The

mediator agents operate concurrently with local agents and contribute to the same decision making processes

as the local agents. The local agents maintain their decision making autonomously, but may request advice

from the mediator agent. This agent has the ability to advise, impose or update decisions taken by the

resource agents in order to satisfy the global objectives and resolve the conflict situations. In this way the

mediator agent can coordinate and influence the overall behaviour of the system. The mediator agent has an

overview of the entire system, while the local agents can have a more detailed, more correct and more up-to-

date view of the local situations. As such, local agents can react more quickly to disturbances, while mediator

agents can coordinate the agents’ behaviour and often improve the global performance.

The mediator architecture provides computational simplicity, while being quite suitable for developing

distributed industrial systems that are complex, dynamic, and composed of a large number of resource

Mediator Agent

Manufacturing
entities

Physical or
functional agents
(resources and/or

jobs, etc)

Figure 4. Mediator architecture

 18

agents. Brennan and Norrie (2001), Bongaerts et al. (2000), and Cavalieri et al. (2000)showed in their

comparative studies that mediator architectures have improved performance relative to autonomous

architectures, because of their ability to plan further in the future in combination with their ability to react to

disturbances, which can result in globally satisfactory performance.

Very basic mediator architecture was proposed by Ramos (1994) for dynamic scheduling in flexible

manufacturing systems. The architecture is composed of task agents, task manager agent, resource agents,

and resource mediator agent. Task manager agent creates the task agents. The resource mediator agent

negotiates with the resource agents using the contract net protocol the execution the tasks. When failures

occur on the resources, message on the operations in failure are sent to the mediator resource agent, which

proceeds to a renegotiation process with other resource agents. This mode of handling the failures is quite

simple.

For an increased robustness in complex manufacturing systems, some authors proposed the integration of

mediator agents to each level of the manufacturing facility. Maturana and Norrie (1999) proposed the

mediator architecture Metaphor I, for dynamic scheduling of large heterogeneous manufacturing systems to

address virtual enterprise issues combining sub-tasking and virtual clustering of agents. Virtual enterprise

partnership issues are associated with the unification of heterogeneous manufacturing subsystems into a

large, dynamic virtual coalition of co-operative subsystems. There are two main types of agents in the

architecture: resource agents and mediator agents. Resource agents are used to represent manufacturing

devices and operations, while mediator agents are used to coordinate the resource agents using the contract

net protocol. Malfunctioning of a resource agent is kept at a local level. A resource breakdown is simulated

by introducing a breakdown period into the resource. Each job allocated within the halt-period is rescheduled

to other available time slots found in the same resource (the malfunctioning resource) or in a different

resource. Based on Metaphor I, Shen et al. (2000) developed Metaphor II, for integrating the manufacturing

enterprise's activities such as design, planning, scheduling, simulation, execution, material supply, and

marketing services. In this architecture the manufacturing system is organised through a hierarchy of sub-

system mediators. Four types of mediators were introduced: enterprise, resource, marketing, and design

mediators. Each subsystem is an agent-based system integrated into the system through a special mediator.

The manufacturing resource agents are coordinated by appropriate mediators at all levels of the system. A

high-level resource mediator coordinates low-level mediators such as machine, tool, worker, and

transportation mediators. Cooperation among resource agents is realised by combining the mediation

mechanism and the contract net protocol. Several schedule repair mechanisms have been developed for

responding to the presence of real-time events, such as: arrival of new jobs, cancellation of jobs, machine

breakdown, and delays in processing time of a job. Sun and Xue (2001) developed a mediator reactive

scheduling architecture for responding to changes in jobs and manufacturing resources. Manufacturing

resources including facilities and resources are represented by agents that are coordinated by two mediators,

namely a facility mediator and a personnel mediator, using the contract net protocol. Reactive scheduling is

conducted to modify the created schedule to respond to changes of jobs such as cancellation of jobs or

insertion of urgent jobs, and manufacturing conditions such as machine breakdowns, or a person's sudden

 19

sickness during the production process. Match up rescheduling strategy and agent-based collaboration are

used to repair only part of the originally created schedule for improving the reactive scheduling efficiency,

while maintaining the scheduling quality.

6. COMPARISON OF SOLUTION TECHNIQUES

Several dynamic scheduling techniques have been identified including: dispatching rules and simulation,

heuristics, meta-heuristics, knowledge-based systems, fuzzy logic, neural networks, hybrid techniques and

multi-agent systems. In order to ascertain the value of the various solution techniques, there has been some

published work comparing some of these techniques. These comparisons help us reason about what

techniques are most suitable for dynamic scheduling. Advantages and disadvantages of these techniques have

been provided by Suresh and Chaudri (1993), Shukla and Chen (1996), Stoop and Weirs (1996), and

Brandimarte and Villa (1999).

Dispatching rules are easy and can find reasonable solutions rapidly. However, their main drawback is

that the solution quality is usually poor due to their myopic nature.

Heuristics have been widely used to react to the presence of real-time events because of their simplicity,

but they may become stuck in poor local optima. To overcome this, meta-heuristics such as tabu search,

simulated annealing, and genetic algorithms have been proposed. Several comparative studies have been

provided in literature to compare the performance of tabu search, genetic algorithms, and simulated

annealing. Unlike simulated annealing and tabu search based on manipulating one feasible solution, genetic

algorithms maintain and manipulate a population of feasible solutions. Genetic algorithms were found

inadequate because they are not efficient to find a near-optimal solution in a reasonable time compared to

tabu search and simulated annealing which operate on a single configuration and not on an entire population

(Glover et al., 1995; Jozefowska et al., 1998; Youssef et al., 2001; Zhou et al., 2001). Knowledge-based

systems possess the potential for automating human expert reasoning and heuristic knowledge to run

production scheduling systems. They model the shop floor by means of many hard and soft constraints.

However, they usually lack the ability to optimise the system and require considerable effort to build and

maintain. They are aimed at generating feasible schedules conforming to the domain knowledge. In terms of

effectiveness of the decision-making capability, knowledge-based systems are limited by the quality and

integrity of the specific domain knowledge. Fuzzy logic has not yet been explored to its fullest potential.

Neural networks cannot guarantee to provide optimal decisions, but their learning capability makes them

ideally suited for rapidly changing systems. Integrating neural networks, simulation and expert systems

seems to have a lot of promise.

Most scheduling systems developed in manufacturing environments are centralised and hierarchical.

Centralised scheduling systems provide a consistent global view of the state of the enterprise and globally

better schedules. However, practical experience has indicated that these systems tend to have problems with

reactivity to disturbances. A large research field, currently subject of many in depth studies, regards the use

of multi-agent systems in dynamic scheduling. The primary motivation in designing these systems is to

decentralise the control of manufacturing systems, thereby reducing the complexity, increasing flexibility,

 20

and enhancing fault tolerance. Refusing the traditional idea of a central scheduling system, which establishes

a manufacturing plan for all the machines and jobs, multi-agent systems assume the presence of several

agents with a good deal of decision making autonomy, distributed inside the manufacturing system. The

agents interact and cooperate with each other in order to achieve effective global performances. Local

autonomy allows the agents to take the responsibility for carrying out local scheduling for one or more

functional or physical components in the production process (such as machines and jobs). Agents have the

ability to observe their environment and to communicate and cooperate with other agents in order to ensure

that local schedules lead to globally desirable schedules. Local autonomy allows the agents to respond

locally to local variations, increasing the robustness and the flexibility of the system. Multi-agent technology

appears to be a highly suitable approach for dynamic scheduling presenting capabilities such as

decentralisation, integration, robustness, and flexibility.

Several comparative studies have discussed the features of multi-agent systems that make them attractive

candidates for implementing dynamic scheduling in contrast to centralised and hierarchical scheduling

systems. Parunak (1996, 2000) demonstrated that multi-agent systems are well suited for applications that

are modular, decentralised, likely to change frequently, ill-structured, and complex. Duffie and Piper (1986),

Tahrumarajah and Bemelman (1997), Brennan and Norrie (2001) presented in their comparative studies

various advantages of multi-agent systems, such as heterogeneity, high modularity, high flexibility, high

robustness against failures, reduced complexity, and reduced software development cost. According to

Sandholm (2000), the most important point that supports multi-agent systems is reactivity: agents can locally

react to local changes faster than a centralised system could. Multi-agent systems provide the foundation for

the creation of an architecture that possesses the capability to benefit manufacturing by enhancing a system's

reliability, maintainability, flexibility, robustness, and stability, as well as providing means for real-time

planning and scheduling. Shen and Norrie (1999) discussed the advantages of using multi-agent systems in

production scheduling which provide capabilities of integration, robustness and reactivity, flexibility,

heterogeneity, and autonomy.(may be to delete)

Two main multi-agent architectures for dynamic scheduling have been investigated: autonomous and

mediator architectures. Autonomous architectures are a highly distributed form of control, where a network

of independent agents cooperates directly towards a common goal. In mediator architectures, the agents

cooperate via a mediator agent. The comparative studies of Brennan and Norrie (2001), Shen and Norrie

(1999), Bongaerts et al. (2000), Shen et al. (2001), and Tharumarajah (2001) reported that autonomous

architectures have prospects of reduced complexity, integrity, cost-efficiency, high flexibility, and a high

robustness against disturbances. They are well suitable for applications with a small number of agents.

However, they have problems in providing globally optimised performance, and the behaviour of the system

can be unpredictable in complex environments with large number of agents. In contrast, mediator

architectures show improved performance relative to autonomous architectures for developing distributed

manufacturing systems, which are complex and composed of a large number of agents such as virtual

enterprises. They combine robustness against disturbances with global performance optimisation and

predictability.

 21

7. CONCLUSION

A vast majority of the literature dealing with production scheduling has primarily been focused on finding

optimal or near-optimal predictive schedules for simple scheduling models with respect to various criteria

assuming that all problem characteristics are known. Such predictive schedules are often produced in

advance in order to direct production operations and to support other planning activities. Unfortunately, most

manufacturing systems operate in dynamic environments subject to various real-time events, which may

render the predictive optimal schedule neither feasible nor optimal. Therefore, dynamic scheduling is of great

importance for the successful implementation of real-world scheduling systems.

We have identified two categories of real-time information commonly considered in the literature: real-

time events related to resources, and real-time events related to jobs. Dynamic scheduling has been defined

under four categories: on-line scheduling (completely reactive approaches), predictive-reactive scheduling,

robust predictive-reactive scheduling, and robust pro-active scheduling. In completely reactive scheduling,

schedules are easily generated using dispatching rules. However, the solution quality is poor due to the

myopic nature of these rules, which fail to provide any plan for other activities, and it is hard to predict

system performance as decisions are made locally in real-time and they typically do not use global

information. Predictive-reactive scheduling is the most common approach in dynamic scheduling. Predictive-

reactive approaches search in a larger solution space, generate high quality schedules, and can generate better

system performance to increase productivity and minimise operating costs compared with on-line scheduling

and predictive scheduling. Simple schedule adjustments require little effort and are easy to implement.

However, they may lead to poor system performance. Generating robust schedules lead to better system

performance, even though robustness measures are not easy to define.

We have discussed two main alternatives to deal with the problem of updating schedules in the most

effective way in the presence of real-time events: schedule repair and complete rescheduling. Schedule repair

refers to some local adjustment of the current schedule. Complete rescheduling regenerates a schedule from

scratch. Complete rescheduling might in principle be better capable of maintaining optimal solutions, but

such solutions are rarely achievable in practice, and computation times are likely to be prohibitive.

Furthermore, frequent schedule regeneration can increase system nervousness and result in instability and

lack of continuity in detailed plant schedules. Schedule repair is very practical because of the potential

saving in CPU times and the stability of the system is maintained.

Several dynamic scheduling methods have been presented including: dispatching rules, heuristics, meta-

heuristics, knowledge-based systems, fuzzy logic, neural networks, Petri nets, hybrid techniques, and multi-

agent systems. The comparative study provided evidence that multi-agent systems are a very promising area

of current and future research in dynamic scheduling. Although there have been some research on agent-

based scheduling systems, more work is still needed. In addition, in developing practical integrated dynamic

scheduling systems, it is necessary to combine different techniques such as operational research, artificial

intelligence, together to endow the scheduling system with the required flexibility and robustness.

 Last and not least, Robustness is one of the key factors to preserve the stability of the manufacturing

systems in the presence of uncertainties. Little research work has been done on the generation of robust

 22

schedules; more research is needed towards the development of more general efficient robustness measures

and rescheduling strategies.

8. REFERENCES

Abumaizar, R. J. and Svestka, J. A., Rescheduling job shops under random disruptions, International Journal of

Production Research, 35 (7), 2065-2082 (1997).

Akturk, M. S. and Gorgulu, E., Match-up scheduling under a machine breakdown, European Journal of Operational

Research, 112 (1), 81-97 (1999).

Aydin, M. E. and Öztemel, E., job-shop scheduling using reinforcement learning agents, Robotics and Autonomous

Systems, 33 (2-3), 169-178 (2000).

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., and Uzsoy, R., Execting production schedules in the face of

uncertainties: A review and some future directions, European Journal of Operational Research, 161 (1), 86-110 (2005).

Bean, J. C., Birge, J. R., Mittenthal, J., and Noon, C. E., Match up scheduling with multiple resources release dates and

disruptions, Journal of Operations Research, 39 (3), 471-483 (1991).

Belz, R. and Mertens, P., Combining knowledge-based systems and simulation to solve rescheduling problems,

Decision Support Systems, 17 (2), 141-157 (1996).

Bierwirth, C. and Mattfeld, D. C., Production scheduling and rescheduling with genetic algorithms, Evolutionary

Computation, 7 (1), 1-17, (1999).

Bongaerts, L., Monostori, L., McFarlane, D., and Kadar, B., Hierarchy in distributed shop floor control, Computers in

Industry, 43 (2), 123-137 (2000).

Brandimarte, P. and Villa, A., Modelling manufacturing systems: From aggregate planning to real-time control,

Springer-Verlag, 1999.

Brennan, R. W. and Norrie, D. H., Evaluating the performance of reactive control architectures for manufacturing

production control, Computers in Industry, 46 (3), 235-245 (2001).

Cavalieri, S., Garetti, M., Macchi, M., and Taisch, M., An experimental benchmarking of two multi-agent architectures

for production scheduling and control, Computers in Industry, 43 (2), 139-152 (2000).

Chryssolouris, G. and Subramaniam, V., Dynamic scheduling of manufacturing job shops using genetic algorithms,

Journal of Intelligent Manufacturing, 12 (3), 281-293 (2001).

Church, L. K. and Uzsoy, R. Analysis of periodic and event-driven rescheduling policies in dynamic shops,

International Journal of Computer Integrated Manufacturing, 5 (3), 153-163 (1992).

Cowling, P. I., Ouelhadj, D., and Petrovic, S., Multi-agent systems for dynamic scheduling, in Proceedings of the

Nineteenth Workshop of Planning and Scheduling of the UK, pp. 45-54, Ed. Garagnani, Max, The Open University,

UK., pp. 45-54, 2000.

Cowling, P. I., Ouelhadj, D., and Petrovic, S., A Multi-agent architecture for dynamic scheduling of steel hot rolling, in

Proceedings of the Third International ICSC World Manufacturing Congress, pp. 104-111, Rochester, NY, USA, 2001.

Cowling, P. I. and Johansson, M., Using real-time information for effective dynamic scheduling, European Journal of

Operational Research, 139 (2), 230-244 (2002).

Cowling, P. I., Ouelhadj, D., and Petrovic, S., A Multi-agent architecture for dynamic scheduling of steel hot rolling,

Journal of Intelligent Manufacturing, 14, 457-470 (2003a).

Cowling, P. I., Ouelhadj, D., and Petrovic, S., Dynamic scheduling of steel casting and milling using multi-agents, to

appear in the Journal of Production Planning and Control, Special Issue on the Application of Multi Agent Systems to

Production Planning and Control, 2003b.

 23

Daniels, R. L. and Kouvelis, P., Robust scheduling to hedge against processing time uncertainty in single-stage

production, Management Science, 41 (2), 363-737 (1995).

Davenport, A. J., Gefflot, C., and Beck, J. C., Slack-based techniques for robust schedules, in Proceedings of the Sixth

European Conference on Planning (ECP2001), 2001.

Dewan, P. and Joshi, S., Dynamic single-machine scheduling under distributed decision-making, International Journal

of Production Research, 38 (16), 3759-3777 (2000).

Dorn, J., Kerr, R. M., and Thalhammer, G., Reactive scheduling in a fuzzy temporal framework, in Szelke, E. and Kerr,

R. M (Eds.), Knowledge-based Reactive Scheduling, pp. 39-55, North-Holland, 1994.

Dorn, J., Kerr, R. M., and Thalhammer, G., Reactive scheduling: improving the robustness of schedules and restricting

the effects of shop floor disturbances by fuzzy reasoning, International Journal of Human Computer Studies, 42, 687-

704 (1995a).

Dorn, J., Case-based reactive scheduling, in Kerr, R. M. and Szelke, E. (Eds.), Artificial Intelligence in Reactive

Scheduling, pp. 32-50, Kluwer Academic Publishers, 1995b.

Duffie, N. A. and Piper, R. S., Non-Hierarchical Control of Manufacturing Systems, Journal of Manufacturing Systems,

5 (2), 137-139 (1986).

Dutta, A., Reacting to scheduling exceptions in FMS environments, IIE Transactions, 22 (4), 33-314 (1990).

Fox, M. S., ISIS: A retrospective. Intelligent Scheduling, in Zweben, Monte and Fox, M. S. (Eds.), Intelligent

Scheduling, pp. 1-28, Morgan Kaufmann Publishers, INC, pp. 1-28, 1994.

Garetti, M. and Taisch, M., Using neuronal networks for reactive scheduling, in Kerr, R. M. and Szelke, E. (Eds.),

Artificial Intelligence in Reactive Scheduling, pp. 146-147, Kluwer Academic Publishers, 1995.

Garner, B. J. and Ridley, G. J., Application of neuronal network process in reactive scheduling, in Szelke, E. and Kerr,

R. M. (Eds.), Knowledge-based Reactive Scheduling, pp. 19-28, North-Holland, 1994.

Glover, F., Kelly, J. P., and Laguna, M., Genetic algorithms and tabu search: hybrids for optimisation, Computers of

Operation Research, 22 (1) (1995), 111-134.

Glover, F. and Laguna, M., Tabu search. Kluwer Academic Publishers, Boston, 1997.

Goldsmith, S. Y. and Interrante, L. D., An autonomous manufacturing collective for job shop scheduling, in The

Proceedings of AI & Manufacturing Research Planning Workshop, pp. 69-74, Albuquere, AAAI Press, 1998.

Gou, L., Luh, P. B., and Kyoya, Y., Holonic manufacturing scheduling: architecture, cooperation mechanism, and

implementation, Computers in Industry, 37 (3), 213-231 (1998).

Henning, G. P. and Cerda, J., Knowledge-based predictive and reactive scheduling in industrial environments,

Computers and Chemical Engineering, 24(9), 2315-2338 (2000).

Herroelen, W. and Leus, R., Project scheduling under uncertainty: Survey and research potentials, European Journal of

Operational Research, 165 (2), 289-306 (2005).

Holthaus, O., Scheduling in job shops with machine breakdowns: an experimental study, Computers & Industrial

Engineering, 36 (1), 137-162 (1999).

Jahangirian, M. and Conroy, G. V., Intelligent dynamic scheduling system: the application of genetic algorithms,

Integrated Manufacturing Systems, 11 (4), 247-257 (2000).

Jain, A. K. and Elmaraghy, H. A., Production scheduling/rescheduling in flexible manufacturing, International Journal

of Production Research, 35 (1), 81-309 (1997).

Jain, A. S. and Meeran, S., Deterministic job-shop scheduling: Past, present and future, European Journal of

Operational Research, 113 (2), 390-434 (1999).

 24

Jensen, M. T., Improving robustness and flexibility of tardiness and total flow-time job shops using robustness

measures, Applied Soft Computing, 1 (1), 35-52 (2001).

Jozefowska, J., Mika, M., Roycki, R., Waligora, G., and Wglarz, J. W., Local search meta-heuristics for discrete-

continuous scheduling problems, European Journal of Operational Research, 107 (2) (1998), 354-370.

Kerr, R. M. and Szelke, E., Artificial intelligence in reactive scheduling, Kluwer Academic Publishers, 1995.

Kim, M. and Kim, Y., Simulation based real-time scheduling in a flexible manufacturing system, Journal of

Manufacturing Management Systems, 13 (2), 85-93 (1994).

Kouis, K., Pierreval, H., and Mebarki, N., Using multi-agent architecture in flexible manufacturing systems for dynamic

scheduling, Journal of Intelligent Manufacturing, 8 (1), 41-47 (1997).

Kutanoglu, E. and Sabuncuoglu, I., An analysis of heuristics in a dynamic job shop with weighted tardiness objectives,

International Journal of Production Research, 37 (1), 165-187 (1999).

Kutanoglu, E. and Sabuncuoglu, I., Routing-based reactive scheduling policies for machine failures in dynamic job

shops, International Journal of Production Research, 39 (14), 3141-3158 (2001).

Le Pape, C., Scheduling as intelligent control of decision-making and constraint propagation, in Zweben, M. and Fox,

M. S. (Eds.), Intelligent Scheduling, Morgan Kaufmann Publishers, INC, pp. 67-98, 1994.

Lee, C. Y. and Uzsoy, R., Minimizing makespan on a single batch processing machine with dynamic job arrivals,

International Journal of Production Research, 37 (1), 219-236 (1999).

Leon, V. J., Wu, S. D., and Storer, R. H., Robustness measures and robust scheduling for job shops, IIE Transactions,

26 (5), 32-41 (1994).

Leus, R. and Herroelen, W., The complexity of machine scheduling for stability with a single disrupted job, Operations

Research Letters, 33 (2), 151-156 (2005).

Li, H., Li, Z., Li, L. X., and Hu, B., A production rescheduling expert simulation system, European Journal of

Operational Research, 124 (2), 283-293 (2000).

Lin, G. Y. and Solberg, J. J., Integrated shop floor control using autonomous agents, IIE Transactions, 24 (3), 57-71

(1992).

Lin, G. Y. and Solberg, J. J., An agent based flexible routing manufacturing control simulation system, in Proceedings

of the 1994 Winter Simulation Conference, pp. 970-977, 1994.

MacCarthy, B. L. and Liu, J., Addressing the gap in scheduling research: a review of optimization and heuristic

methods in production scheduling, International Journal of Production Research, 31 (1), 59-79 (1993).

Maturana, F., Shen, W., and Norrie, D. H., MetaMorph: an adaptive agent-based architecture for intelligent

manufacturing, International Journal of Production Research, 37 (10), 2159-2173 (1999).

Mehta, S. V. and Uzsoy, R., Predictable scheduling of a single machine subject to breakdowns, International Journal of

Computer Integrated Manufacturing, 12 (1), 15-38 (1999).

Meziane, F., Vadera, S., Kobbacy, K., and Proudlove, N., Intelligent systems in manufacturing: current developments

and future prospects, Integrated Manufacturing Systems, 11 (4), 218-238 (2000).

Miyashita, K. and Sycara, K., CABINS: a framework of knowledge acquisition and iterative revision for schedule

improvement and reactive repair, Artificial Intelligence, 76 (1), 377-426 (1995).

Muhlemann, A. P., Lockett, G., and Farn, C. K., Job shop scheduling heuristics and frequency of scheduling,

International Journal of Production Research, 20 (2), 227-241 (1982).

Nof, S. Y. and Grant, F. H., Adaptive/predictive scheduling: review and a general framework, Production Planning &

Control, 2 (4), 298-312 (1991).

 25

O'Donovan, R., Uzsoy, R., and McKay, K. N., Predictable scheduling of a single machine with breakdowns and

sensitive jobs, International Journal of Production Research, 37 (18), 4217-4233 (1999).

O’Hare, G. and Jennings, N., Foundations of Distributed Artificial Intelligence, Wiley, New York, 1996.

O’kane, J. F., A knowledge-based system for reactive scheduling decision-making in FMS, Journal of Intelligent

Manufacturing, 11 (5), 461-474 (2000).

Ouelhadj, D., Hanachi, C., and Bouzouia, B., Multi-agent system for dynamic scheduling and control in manufacturing

cells, in Proceedings of the IEEE International Conference on Robotics and Automation, pp.1256-1262, Belgium, 1998.

Ouelhadj, D., Hanachi, C., and Bouzouia, B., Farhi, A. and Moualek, A., A Multi-contract net protocol for dynamic

scheduling in flexible manufacturing systems, in Proceedings of the IEEE International Conference on Robotics and

Automation, pp. 1114-1120, USA, 1999.

Ouelhadj, D., Hanachi, C., and Bouzouia, B., Multi-agent architecture for distributed monitoring in flexible

manufacturing systems (FMS). In: Proceedings of the IEEE International Conference on Robotics and Automation, pp.

1120-1126, San Francisco, USA, 2000.

Ouelhadj, D., Cowling, P. I., and Petrovic, S., Contract net protocol for cooperative optimisation and dynamic

scheduling of steel production, in Ajith, Ibraham, Katrin, Franke and Mario, Koppen (Eds.), Intelligent Systems Design

and Applications, pp. 457-470, Springer-Verlag, 2003a.

Ouelhadj, D., Cowling, P. I., and Petrovic, S. (2003b) Utility and stability measures for agent-based dynamic scheduling

of steel continuous casting, in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 175-

180, Taipei, Taiwan, 2003b, Selected in the finalist best student award.

Ovacik, I. M. and Uzsoy, R., Rolling horizon algorithms for a single-machine dynamic scheduling problem with

sequence-dependent set-up times, International Journal of Production Research, 32 (6), 1243-1263 (1994).

Park, J., Kang, M., and Lee, K., Intelligent operations scheduling system in a job shop, International Journal of

Advanced Manufacturing Technology, 11, 111-119 (1996).

Parunak, H. V., Manufacturing experience with the contract net, in Huhns, M. (Eds.), Distributed Artificial Intelligence,

pp. 285-310, Pitman, London, 1987.

Parunak, H. V., Applications of distributed artificial Intelligence in industry, in O'Hare, G. M. P. and Jennings, N. R

(Eds.), Foundation of Distributed Artificial Intelligence, Chapter 4, Wiley Inter-science, New York, 1996.

Parunak, H. V., Baker, A. D., and Clark, S. J., The AARIA agent architecture: an example of requirements-driven agent

based system design, in Proceedings of the 1st International Conference on Autonomous Agents, pp.482-483, California,

USA, 1997.

Parunak, H. V., Agents in Overalls: experiences and issues in the development and deployment of industrial agent-

based systems, International Journal of Cooperative Information Systems, 9(3), 209-227 (2000).

Pendharkar, P. C., A computational study on design and performance issues of multi-agent intelligent systems for

dynamic scheduling environments, Expert Systems with Applications, 16 (2), 121-133 (1999).

Petrovic, D., and Duenas, A., (2006), A Fuzzy Logic Based Production Scheduling/Rescheduling in the Presence of

Uncertain Disruptions, to appear in Fuzzy Sets and Systems.

Pham, D. T. and Karaboga, D., Intelligent optimisation techniques: genetic algorithms, tabu search, simulated

annealing and neural networks, Springer, London, 2000.

Pinedo, M., Scheduling theory, algorithms and systems, First edition, Prentice Hall, 1995.

Pinedo, M., Scheduling theory, algorithms and systems, Second edition, Prentice Hall, 2002.

Rajendran, C. and Holthaus, O., A comparative study of dispatching rules in dynamic flow shops

and job shops, European Journal of Operational Research, 116 (1), 156-170 (1999).

 26

Ramasesh, R., Dynamic job shop scheduling: a survey of simulation research, OMEGA International Journal of

Management Science, 18 (1), 43-57 (1990).

Ramos, C., An architecture and a negotiation protocol for the dynamic scheduling of manufacturing systems, in

Proceedings of IEEE International Conference on Robotics and Automation, pp. 8-13, 1994.

Reeves, C. R., Modern heuristic techniques for combinatorial problems, John Wiley & Sons, McGraw-Hill

International (UK) Limited, 1995.

Rossi, A. and Dini, G., Dynamic scheduling of FMS using a real-time genetic algorithm, International Journal of

Production Research, 38 (1), 1-20 (2000).

Ruiz, D., Canton, J., and Mara, N. J., Espuna, A. and Puigjaner, L., On-line fault diagnosis system support for reactive

scheduling in multipurpose batch chemical plants, Computers and Chemical Engineering, 25 (4), 829-837 (2001).

Sabuncuoglu, I., A study of scheduling rules of flexible manufacturing systems: a simulation approach, International

Journal of Operational Research, 36(2), 527-546 (1998).

Sabuncuoglu, I. and Karabuk, S., Rescheduling frequency in an FMS with uncertain processing times and unreliable

machines, Journal of Manufacturing Systems, 18 (4), 268-283 (1999).

Sabuncuoglu, I. and Bayiz, M., Analysis of reactive scheduling problems in a job shop environment, European Journal

of Operational Research, 126 (3), 567-586 (2000).

Sarin, S. C. and Salgame, R. R., Development of a knowledge-based system for dynamic scheduling, International

Journal of Production Research, 28(8), 1499-1513 (1990).

Schmidt, G., How to apply fuzzy logic to reactive scheduling, in Szelke, E. and Kerr, R. M. (Eds.), Knowledge-based

Reactive Scheduling, pp. 57-67, North-Holland, 1994.

Shafaei, R. and Brunn, P., Workshop scheduling using practical (inaccurate) data Part 1: The performance of heuristic

scheduling rules in a dynamic job shop environment using a rolling time horizon approach, International Journal of

Production Research, 37 (17), 3913-3925 (1999a).

Shafaei, R. and Brunn, P., Workshop scheduling using practical (inaccurate) data Part 2: An investigation of the

robustness of scheduling rules in a dynamic and stochastic environment, International Journal of Production Research,

37 (18), 4105-4117 (1999b).

Shaw, J. M., Dynamic scheduling in cellular manufacturing systems: a framework for Network decision making,

Journal of Manufacturing Systems, 7 (2), 83-94 (1988).

Shen, W. and Norrie, D. H., Agent based systems for intelligent manufacturing: a state of the art survey, International

Journal of Knowledge and Information Systems, 1 (2), 129-156 (1999).

Shen, W., Maturana, F., and Norrie, D. H., Metaphor II: an agent-based architecture for distributed intelligent design

and manufacturing, Journal of Intelligent Manufacturing, 11 (3), 237-251 (2000).

Shen, W., Norrie, D. H., and Barthes, J. P. A., Multi-agent systems for concurrent intelligent design and manufacturing.

Taylor & Francis, London, 2001.

Shukla, C. S. and Chen, F. F., The state of the art in intelligent real-time FMS control: a comprehensive survey, Journal

of Intelligent Manufacturing, 7, 441-455 (1996).

Smith, R., The contract net protocol: high level communication and control in distributed problem solver, IEEE

Transactions on Computers, 29 (12), 1104-1113 (1980).

Smith, F. S., OPIS: A methodology and architecture for reactive scheduling, in Zweben, M. and Fox, M. S., Intelligent

Scheduling, pp. 29-66, Morgan Kaufmann Publishers, INC, 1994.

Smith, F. S., Reactive scheduling systems, in Brown, D. and Scherer, W. T. (Eds.), Intelligent Scheduling Systems, pp.

155-192, Kluwer Academic Publisher, 1995.

 27

Sousa, P. and Ramos, C., A distributed architecture and negotiation protocol for scheduling in manufacturing systems,

Computers in Industry, 38 (2), 103-113 (1999).

Stoop, P. P. M. and Weirs, V. C. S., The complexity of scheduling in practice, International Journal of Operations and

Production management, 16 (10), 37-53 (1996).

Sun, J. and Xue, D., A dynamic reactive scheduling mechanism for responding to changes of production orders and

manufacturing resources, Computers in Industry, 46 (2), 189-207 (2001).

Suresh, V. and Chaudhuri, D., Dynamic scheduling a survey of research, International Journal of Production

Economics, 32 (1), 53-63 (1993).

Szelke, E. and Kerr R. M., Knowledge-based reactive scheduling, North-Holland, 1994.

Tharumarajah, A. and Bemelman, R., Approaches and issues in scheduling a distributed shop-floor environment,

Computers in Industry, 34 (1), 95-109 (1997).

Tharumarajah, A., Survey of resource allocation methods for distributed manufacturing systems, Production Planning

& Control, 12 (1), 58-68 (2001).

Vieira, G. E., Herrmann, J. W., and Lin, E., Analytical models to predict the performance of a single machine system

under periodic and event-driven rescheduling strategies, International Journal of Production Research, 38 (8), 1899-

1915 (2000a).

Vieira, G. E., Hermann, J. W., and Lin, E., Predicting the performance of rescheduling strategies for parallel machine

systems, Journal of Manufacturing Systems, 19 (4), 256-266 (2000b).

Vieira, G. E., Hermann, J. W., and Lin, E., Rescheduling manufacturing systems: a framework of strategies, policies

and methods, Journal of Scheduling, 6 (1), 36-92 (2003).

Weirs, V. C. S., A review of the applicability of OR and AI scheduling techniques in practice, Omega International

Journal of Management Science, 25 (2), 145-153 (1997).

Wu, S. D., Storer, R. H. and Chang, P. C., A rescheduling procedure for manufacturing systems under random

disruptions, in Proceedings Joint USA/German Conference on New Directions for Operations Research in

Manufacturing, pp. 292-306, 1991.

Wu, S. D., Storer, R. H., and Chang, P. C., One machine rescheduling heuristics with efficiency and stability as criteria,

Computers Operations Research, 20 (1), 1-14 (1993).

Yamamoto, M. and Nof, S. Y., Scheduling/rescheduling in the manufacturing operating system environment,

International Journal of Production Research, 23 (4), 705-722 (1985).

Youssef, H., Sait, S.M., and Adiche, H., Evolutionary algorithms, simulated annealing and tabu search: a comparative

study, Engineering Applications of Artificial Intelligence, 14 (2) (2001), 167-181.

Zhou, H., Feng, Y., and Han, L., The hybrid heuristic genetic algorithm for job shop scheduling, Computers and

Industrial Engineering, 40 (3) (2001), 191-200.

Zweben, M. and Fox, M. S., Intelligent scheduling, Morgan Kaufmann Publishers, INC, 1994.

Zweben, M., Daun, B., and Deale, M., Scheduling and rescheduling with iterative repair, in Zweben, M. and Fox, M. S.

(Eds.), Intelligent Scheduling, pp. 241-254, Morgan Kaufmann Publishers, INC, 1994.

