A Value Focused Thinking Approach to Academic Course Scheduling

Shane A. Knighton

Follow this and additional works at: https://scholar.afit.edu/etd
Part of the Engineering Education Commons, Higher Education Commons, and the Operational

Recommended Citation

Knighton, Shane A., "A Value Focused Thinking Approach to Academic Course Scheduling" (1998). Theses and Dissertations. 5688.
https://scholar.afit.edu/etd/5688

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

A VALUE FOCUSED THINKING
APPROACH TO ACADEMIC COURSE SCHEDULING THESIS

Shane A. Knighton, First Lieutenient, USAF AFIT/GOR/ENS/98M-14

> DTIC QUALITY IWORDCTED \&

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Shane A Knighton, $1^{\text {st }}$ Lieutenient, USAF CLASS: GOR 98M

THESIS TITLE: Value Focused Thinking Approach to Academic Course Scheduling

DEFENSE DATE: 10 March 1998

COMMITTEE:
NAME/DEPARTMENT
SIGNATURE

Advisor
Lt Col Jack Jackson/ENS

Co-Advisor
Dr Richard Deckro /ENS

AFIT/GOR/ENS/98M-14

A Value Focused Thinking Approach to Academic Course Scheduling

THESIS

Presented to the Faculty of the Graduate School of Engineering Air Education and Training Command In Partial Fulfillment of the Requirements for The Degree of Master of Science in Operations Research

Shane A. Knighton, B.S.
First Lieutenant, USAF

March 1998

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

ACKNOWLEDGEMENTS

I am grateful to my thesis advisors, LtC Jack Jackson and Dr Dick Deckro. Thank you for your support and commitment to my thesis research. You both exemplify professionalism and are a tremendous example to young Air Force officers. LtC Jackson, thank you for your steadfast resolve, and for always taking the time to share your Air Force experiences and career advice. Dr Deckro, thank you for your injections of levity and for providing me with a source of expertise in Operations Research.

On a more personal note, I would like to thank the many close friends I have made during my time at AFIT. I will miss the extra studies in probability; who knew statistics could be so much fun. I would also like to thank Dale and J.D., who always gave the opportunity to get my exercise. My friends, you have made the rigors of AFIT an enjoyable experience.

I would also like to thank my friends and family at home. You have always given me the utmost support and inspiration. I know I can climb any mountain with you on my side.

Of course, I want to thank my wife, Michelle. Without your encouragement I would never have been able to make it. Thank you for enduring the cold winters of Ohio. I know I can count on you when things get tough, you are always there for me.

I would also like to thank God, through who all things are possible.

Page

Acknowledgements ii
List of Figures v
List of Tables vi
Abstract vii
Chapter 1 1
Chapter 2 3
Introduction 3
Survey of Literature 4
Mixed Integer Programming Approach 5
Cost Coefficients 7
VFT Theoretical Model 8
Value Focused Thinking 10
Multiple Objective Value Analysis 11
Methodology 13
Influence Diagram 13
Value Hierarchy 14
Mixed Integer Program 19
Solicitation of Preferences 21
MIP Formulation 23
Decision Support System 26
Results 27
Iterative Approach to a Complete Schedule 34
Conclusions 35
Chapter 3 37
Appendix A: Spring Quarter 1998 Schedule 38
Appendix B: Electronic Questionnaire Source Code 40
Appendix C: Problem Generator Source Code 44
Appendix D: OSL Output for "Equal Weighting" Scheduling Variation 58
Appendix E: OSL Output for "Number of Courses Weighting" Scheduling Variation 60
Appendix F: OSL Output for "Number of Students Weighting" Scheduling Variation 62
Appendix G: OSL Output for "Number of Courses with Lectures Given Weighting"
Scheduling Variation 64
Appendix H: EDSSS User Manual 66
Appendix I: Preference Table for Spring Quarter 98 Schedule 79
Appendix J: Ed Plans Query for Spring Quarter 98 Schedule 81
Bibliography 98
Vita 99

LIST OF FIGURES

Figure Page

1. Decision Analysis Process Flowchart 9
2. Value Hierarchy Example 11
3. Influence Diagram 14
4. Value Hierarchy 15
5. Single Dimensional Value Function 17
6. Overall Value of Schedules 30
7. Departmental Value of Schedules 31
8. Percentage of $1^{\text {st }}$ Day/Time Preferences Accommodated 32
9. Comparison of Neutral Day/Time Assignments to Non-Respondents 33
10. Classroom Utilization for Completed Schedule 35

LIST OF TABLES

Table Page

1. Day/Time Scenarios 20
2. Room Groups 21
3. Time Ranges 22
4. Departmental Weightings 29
5. Summary of Processing Times 29

Abstract

In 1997, the School of Engineering of the United States Air Force Institute of Technology began exploring ways of automating the academic course scheduling process. The administration desired an expedient approach for course scheduling which supports the institute's mission of "providing scientific and technological education" to officers from all branches of military service, as well as international military forces. The scheduling approach needed to be flexible, efficient, and represent the institute's values and principles. Decision Analysis (DA) and specifically, Value Focused Thinking (VFT), is used to decompose the complex problem of academic course scheduling and determine the factors that are important in a schedule. An MS Excel based Decision Support System generates a Mixed Integer Program (MIP). The MIP formulation combines the institute's goals with facility constraints, faculty preferences, student preferences, and administration guidance to develop an academic course schedule representative of the institute's values.

CHAPTER 1

The research documented in this thesis is in response to the Office of Academic Operations of the School of Engineering of the Air Force Institute of Technology's request for support. The staff of the Office of Academic Operations is responsible for scheduling the courses offered by the School of Engineering on a quarterly basis. In an effort to reduce the amount of time required to produce a schedule, an efficient approach to academic course scheduling was sought. Decision Analysis and Value Focused Thinking (VFT) were used to decompose the course scheduling problem and determine the important issues inherent in a quality schedule.

Our goal is to provide the Office of Academic Operations with a tool that will efficiently solve the academic course scheduling problem for the School of Engineering and reduce the time and effort expended by the staff in the production of a schedule. We have done this through the development of an Educational Decision Support Scheduling System (EDSSS). EDSSS combines an MS Excel based spreadsheet and suite of Visual Basic Modules, with the IBM Mixed Integer Solver named Optimization Subroutine Library (OSL).

The remainder of this thesis explains the theoretical background and methodology used in the development of EDSSS. Textual copies of the Visual Basic Modules and a user manual are included. This thesis is organized so that Chapter 2 is a stand-alone article on our research, suitable for submission to an academic journal. Chapter 3 outlines some obvious extensions to this work.

Appendix A contains the completed schedule for the 1998 Spring Quarter for the School of Engineering of AFIT. Appendix B provides the Visual Basic source code for
the electronic questionnaire used in EDSSS, while Appendix C gives the Visual Basic source code for the modules used by the mixed integer problem generator portion of EDSSS. Appendices D through G show the results for each of the four scheduling variations obtained from IBM's mixed integer solver, Optimization Subroutine Library (OSL). Appendix H provides a user manual for EDSSS. Finally, Appendix I and J contain the Preference Table and Ed Plan Query used by EDSSS in the development of the Spring Quarter 98 schedule.

CHAPTER 2

INTRODUCTION

The School of Engineering (EN) of the United States Air Force Institute of Technology (AFIT), located on Wright-Patterson Air Force Base, Ohio, provides ABET accredited post-graduate education to officers in the U.S. Air Force, along with officers from other branches of service and international military forces. The school of engineering has an enrollment of approximately 350 students, and is comparable in size to a small civilian college or secondary school. AFIT's School of Engineering is divided into six departments, each under the direction of a Department Head. The six departments include Aeronautics and Astronautics (ENY), Electrical and Computer Engineering (ENG), Engineering and Environmental Management (ENV), Mathematics and Statistics (ENC), Operational Sciences (ENS), and Engineering Physics (ENP).

Academic course scheduling at the School of Engineering of the United States Air Force Institute of Technology is largely a manual process. The institute's six departments propose days and times for the courses to be offered by that department in the upcoming academic quarter. Students create Education Plans specifying enrollment in courses for the upcoming quarter. The office of Academic Operations gathers the departmental proposals and is challenged with combining the offered times and student education plans into a working course schedule. A working schedule assigns courses to days, times, and rooms. The schedule must comply with all administrative policy as well as facility constraints. The staff of the office of Academic Operations performs this task by hand, with a working schedule often requiring multiple revisions and over 65 personhours.

This paper documents a new approach to academic course scheduling for the School of Engineering of AFIT. The objectives of the research are: (1) to quantify the factors and issues important to EN in a course schedule, (2) to find metrics that can measure how well a schedule addresses the important factors, (3) to create a Decision Support System that will aid the offices of Academic Operations in scheduling future quarters, and (4) to develop a efficient means of solving the academic course scheduling problem for the School of Engineering.

The remainder of this paper is organized in the following manner. The survey of academic course scheduling literature is presented followed by the theoretical background for the Value Focused Thinking (VFT) approach used to decompose and quantify the complex issues. A Mixed Integer Programming (MIP) is developed whose objective maximizes the institute's values and whose implementation efficiently solves the academic course scheduling problem at AFIT. Finally, the results of this research are presented.

SURVEY OF LITERATURE

Academic course scheduling is generally broken into two main tracts in the literature: (1) faculty to course assignments and (2) the assignment of courses to days, times, and rooms, herein referred to as course timetabling. This research deals only with the latter area, as each course at the School of Engineering for AFIT has been assigned to a faculty member, by departmental process, prior to scheduling.

Mixed Integer Programming Approach

Many examinations of the course timetabling problem in the literature present a Mixed Integer Problem (MIP) formulation. Mulvey (1982) presents the following MIP using binary variables, denoted as problem P1.

Problem P1: Mulvey's MIP Formulation

$$
\begin{array}{lll}
\text { Maximize } & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\text { Subject To } & \sum_{j=1}^{n} x_{i j}=1 & \text { all } i, \\
& \sum_{i=1}^{m} k_{i} x_{i j} \leq f_{j} & \text { all } j, \\
& \sum_{i \in I_{p}} \sum_{j \in S_{t}} x_{i j} \leq 1 & \text { all } p, t, \\
& \sum_{i \in I_{r}} \sum_{j \in S_{t}} x_{i j} \leq 1 & \text { all } r, t, \\
& x_{i j}=\{0,1\} & \tag{6}
\end{array}
$$

where i is defined as a course, and j as a classroom/day/time combination. The binary variable $\mathrm{x}_{i j}$ is 1 if course i is taught during the classroom/day/time combination j and 0 otherwise. I_{p} is an indexed set defining which classes are taught by faculty member p, while I_{r} defines which classes are assigned to student r. Finally, S_{t} is the set of classroom/day/time combinations that occur simultaneously and $c_{i j}$ is a cost coefficient realized when course i is assigned to classroom/day/time combination j. The first constraint, equation (2), ensures that each class is assigned to only one classroom/day/time combination. Equation (3) requires adequate capacity of the
classrooms, while (4) and (5) preclude instructors and students from being assigned to two activities at one time (Mulvey: 1989).

Mulvey classifies this MIP formulation as a "well-defined model", meaning the solution can theoretically be found using a standard MIP solution technique, such as branch and bound. However, the large number of binary variables required to implement the MIP formulation led Mulvey (1989) to state that "a realistic size [academic course scheduling] problem cannot be solved within a reasonable length of processing time." For example, consider a timetabling problem in which there are 100 courses to schedule in 10 classrooms. We will restrict the problem further by requiring each course to be started on the hour between 0800 and 1700 , thus allowing only 45 time slots per week. This relatively small timetabling problem's formulation would require, $100 * 10 * 45$ or 45,000 binary variables, rendering the problem computationally intractable by most existing MIP solvers.

Sampson, Weiss, and Freeland (1995) propose a similar MIP formulation to solve the course timetabling problem. As with the Mulvey formulation, the MIP was abandoned "because of the combinatoric nature of the problem" (Sampson, Freeland and Weise: 1995). Mulvey (1989) eventually proposed a relaxation of the MIP and a "manmachine interaction" approach to finding a solution. Man-machine interaction requires user input as the solver executes. Sampson and Weiss (1995), Ferland and Fleurent (1994), and Bloomfield and McSharry (1979) propose heuristic techniques as well as man-machine interaction to solve the course timetabling problem and develop a working schedule for academic courses.

Alvarez-Valdez, Martin, and Tamarit (1996) developed a tabu search heuristic to solve a timetabling problem for Spanish secondary schools. Costa (1994) also proposes a tabu search approach to course scheduling. In both implementations, a traditional MIP formulation of the academic course scheduling problem is solved to near optimality. Great improvements in CPU time are realized by a tabu search over a Mixed Integer Solver.

Cost Coefficients

Although the overriding theme of the academic course scheduling literature proposes heuristic or iterative approaches, the definition of the $c_{i j}$, (cost coefficients) differ. Mulvey proposes a metric, such as the number of occupied seats, be used to determine a cost associated with scheduling course i in classroom/day/time combination j (1982).

Bloomfield and McSherry determine the cost coefficients using instructor preferences (1979). Each instructor is given a choice of either a Monday, Wednesday, and Friday schedule or a Tuesday and Thursday schedule. Additionally, instructors can pick either AM or PM time of day and a type of classroom. As with most of the models, classrooms are grouped by type, e.g. those classrooms having similar capacities, equipment, and so forth. Each instructor provides a preferred choice for a day, time, and room and a ranking of the choices. The heuristic, proposed by Bloomfield and McSherry (1979), tries to satisfy as many preferences as possible. The heuristic initially schedules a day to each instructor who ranked "day" the highest, a time to each instructor who chose "time" as the highest and a location to each instructor who preferred "room type". The heuristic continues to iterate until a working schedule is found.

Sampson, Freeland and Weiss (1995) also use faculty preferences to determine the cost coefficients. Additionally, they incorporated the students' request to enroll in specific classes. Their model uses a "modified-local search heuristic" to develop a timetable. Furthermore, an enrollment-construction heuristic was used to maximize the number of students who are able to attend the courses they desired. This iterative approach is used to find a schedule that works within faculty preferences and constraints, while attempting to maximize the number of courses available to interested students (Sampson, Freeland and Weiss, 1995).

Graves, Schrage and Sankaran (1993) implement an auction method to incorporate student preferences. Students are allowed to pick from an already establish timetable. Each student is given a place in a queue. The number of preferences satisfied during the previous quarter's schedule primarily determines this placement. For subsequent class registration an inverse order of scheduling permitted students a priority advantage based upon the number of previously scheduled preferences. In other words, positioning in the queue is relative to the extent to which preferences were accommodated by previous schedules.

VFT THEORETICAL MODEL

Although the formulation of the MIP is straight forward, the number of binary variables associated with a course timetabling problem require a computationally intractable amount of time for solution. The goal to produce a course schedule is a difficult, complex problem. Decision analysis, a branch of operations research, "provides
structure and guidance for thinking systematically about hard decisions" (Clemens, 1996).

Decision analysis requires the involvement of a decision maker, presumably the Dean of the institution, for the academic course scheduling problem. The decision maker's values are the key elements in the process. According to Clemens, the decision analysis process can be broken down into key elements or steps. As these steps are followed, a clearer understanding and solution to the problem may be available. This process decomposes the problem to make it simpler. Clemens points out that "decomposition is the key to decision analysis" (Clemens, 1996). The following flow chart from Clemens illustrates the decision analysis process.

Figure 1: Decision Analysis Process Flowchart (Clemens, 1996)

Note the process is iterative. The desired result may always be improved, through continual refinement of the decision situation, the addition of new alternatives, or refined insight and further decomposition.

To ascertain a precise understanding, the decision situation must be well defined and the objectives clearly outlined, prior to decomposing the problem. There are two prevailing thoughts with regard to this effort. Keeney (1992) identifies the first approach as "alternative-focused thinking". This approach concentrates on developing potential solutions to the problem, known as alternatives, and using the differences in the alternatives for evaluation. A comparison of two or more working schedules created manually by staff of the office of Academic Operation would be an example of this approach. Keeney (1992) does not favor this approach, claiming it is backwards; "it puts the cart of identifying alternatives before the horse of articulating values".

Value Focused Thinking

Conversely, Keeney (1992) concentrates on an approach he calls "value-focused thinking". Contrary to "alternative-focused thinking", this approach concentrates on soliciting from the decision maker and others who are knowledgeable about the problem, a set of values or goals, which address what is important in the decision situation.

Having identified these goals, they are structured into general and specific objectives, that if achieved will realize the established goals. These objectives are then organized into a value hierarchy. A value hierarchy structures these objectives such that the upper level values are more general and have a greater impact on the overall value of the hierarchy, while lower level values further describe the upper levels. The most specific values are then given evaluation measures or metrics that show how well an alternative has met that
value. Furthermore, each level of the value hierarchy can be weighted based on the decision maker's preference for obtaining that value over other values at the level. Below is an example of a value hierarchy with weights.

Figure 2: Value Hierarchy Example

The value hierarchy can be used to inspire the creation of new alternatives that had not been previously considered. According to Kirkwood (1997), "When you know what you are trying to accomplish, then you can attempt to identify alternatives that address these objectives". Furthermore, the value hierarchy provides a means for evaluating various alternatives. The use of the evaluation measures, associated with the most specific values, provide "formal methods... [using] a mathematical function to combine evaluation measures from the hierarchy" that can be used to rank alternatives and determine the best solution to a difficult problem (Kirkwood, 43:1997).

Multiple Objective Value Analysis

Once a value hierarchy has been established, evaluation measures or metrics are used to capture an alternative's worth with regards to a specific objective. Evaluation measures are attributes that provide an objective evaluation of performance. Single
dimensional value functions translate the metric performance into a unitless quantity known as value. Single dimensional value functions are either monotonically increasing or decreasing (Kirkwood, 1997).

Weights are determined for each evaluation measure. The weights are used to show "different degrees of importance attached" to the performance of an alternative with regards to a specific evaluation measure. That is, if evaluation measure (1) is weighted more heavily than evaluation measure (2), "variations over the range for [evaluation measure (1)] are more important than variations over the range for [evaluation measure (2)] when using this set of weights" (Kirkwood, 1997).

Once the weights and single dimensional value functions are established, the final value or overall value of each level of the value hierarchy becomes

$$
\begin{equation*}
v\left(X_{1}, X_{2}, \ldots, X_{n}\right)=w_{1} v_{1}\left(X_{1}\right)+w_{2} v_{2}\left(X_{2}\right)+\ldots+w_{n} v_{n}\left(X_{n}\right) \tag{7}
\end{equation*}
$$

where $\mathrm{v}_{i}\left(\mathrm{X}_{i}\right)$ is the value determined using the single dimensional value functions associated with evaluation measure or attribute X_{i} and w_{i} is the weight given to that evaluation measure (Kirkwood, 1997). This assessment of value is called an additive value function.

Kirkwood (1997) states that the attributes, X_{i}, of an additive value function must have mutual preferential independence. Mutual preferential independence exists if Y is preferentially independent of Z, where Y and Z are a partition of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Kirkwood (1997) shows that " Y is preferentially independent of Z if the rank ordering of alternatives that have common levels for all attributes in Z does not depend on these common levels." These assumptions will later be shown to hold for this research.

METHODOLOGY

Academic Course Scheduling can be decomposed into a series of separate decisions. A decision is made whether to schedule course i on day/time j and in room r or not. A schedule is created once a decision is made for each course i. Obviously, there exist myriad different combinations of decisions that all create a schedule. Therefore, an additional decision chooses the "best" schedule from the set of possible schedules. The methodology herein uses this view of the academic course scheduling problem. The decision maker, for this research was the Dean of the School of Engineering; his decision was supported by his staff, and the Department Heads.

Influence Diagram

The effort began with the creation of an influence diagram. An influence diagram is a visualization tool that allows a decision maker to annotate the decision to be made and the important factors that influence the value of the result of the decision. The influence diagram for the course scheduling problem at AFIT is shown in Figure 3. Directives from the Dean of the School of Engineering, as well as department, faculty and student preferences are factors that influence the value of the decision to schedule course i on day/time j in room r. The outcome of the individual course scheduling decisions as well as room capacities, room availability, instructor conflicts and student conflicts effect the value of the overall schedule. The influence diagram as a whole defines the decision situation.

Figure 3: Influence Diagram

Rectangles represent decisions, while rounded boxes represent values. The arrows show a direct influence imparted by a decision or value.

Value Hierarchy

The influence diagram aids in the creation of the value hierarchy. A value hierarchy is developed by working closely with the decision maker to decompose his decision into the factors that influence the decision situation. These are placed within the levels of the hierarchy. The value hierarchy must be mutually exclusive and collectively
exhaustive. Figure 4 shows the value hierarchy for the decision situation illustrated by the influence diagram in Figure 3.

Figure 4: Value Hierarchy

The value hierarchy has five distinct levels and two go/no-go criteria. The go/nogo criteria are shown in bold outline and are defined later. The value of the schedule for each department has the most influence on the overall value of the schedule. The decision maker, through weighing of the values at this level, determines the contribution of each department's value towards the overall value. In a similar fashion, the contribution of the values from lower levels on upper levels is dictated by weighting. The weights of any level of the hierarchy must be a convex combination. Therefore, the following equations govern the weights used in the calculation of value.

$$
\begin{array}{ll}
\sum_{D=1}^{6} w_{D}=1 & \\
w_{f_{D}}+w_{s_{D}}=1 & \text { for all } D \\
\sum_{i_{D}} w_{i_{D}}=1 & \text { for all } D \\
w_{i_{i_{D}}}+w_{r_{i}}=1 & \text { for all } i_{D}
\end{array}
$$

where w_{D} is the weight of each department, $w_{f D}$ is the weight of the faculty preferences in department D and $w_{s D}$ is the weight of the students in department $D . w_{i D}$ is defined as the weight of each course in department $D, w_{j i D}$ is the weight of day/time preference j for course i_{D} and, $w_{r i D}$ is the weight of room preference r for course i_{D}. The Dean assigns the departmental weighting, while the respective Department Heads assign the faculty and course weightings. Instructors assign day/time scenario and room group weights.

For the purposes of this research for AFIT, the weight of the student's values, $w_{s} D$, for each department was set to zero, making $w_{f D}$ equal tol. This was done for two reasons: (1) the value of the availability of electives is covered by the go/no-go criteria of a deconflicted schedule, and (2) as active duty military officers attending course is considered a student's primary duty and additional duties that may make a day/time scenario unattractive are kept to a minimum. Of course, student weighting can be utilized in a different operational setting.

The following value function describes the contribution of day/time preference j of course i on the overall value of the schedule.

$$
\begin{equation*}
V_{i_{D} j}=w_{D} \cdot w_{f_{D}} \cdot w_{i_{D}} \cdot w_{j_{i_{D}}} \cdot v_{j_{i_{D}}} \tag{12}
\end{equation*}
$$

where $V_{i D j}$ is the contribution to the overall value and $v_{j i D}$ is the value of scheduling course i in day/time j. In a similar manner, equation (13) describes the contribution of room preference r of course i.

$$
\begin{equation*}
V_{i_{D} r}=w_{D} \cdot w_{f_{D}} \cdot w_{i_{D}} \cdot w_{r_{i_{D}}} \cdot v_{r_{i D}} \tag{13}
\end{equation*}
$$

where $V_{i D r}$ is the contribution to the overall value and $v_{r i D}$ is the value of scheduling course i in room r.

The value of $v_{j i D}$ and $v_{r i D}$ is determined using a single dimensional value function. The single dimensional value function is a monotonically decreasing step function that transforms preference numbers into a unitless property known as value. Figure 5 shows the value function used to determine the value of both the instructors' day/time and room preferences. This value function is used for all courses scheduled. The department heads unanimously agreed to the slope and shape of the function.

Figure 5: Single Dimensional Value Function

Therefore, course i's total contribution on the overall value, $V_{i D}$, is found by combining equations (12) and (13).

$$
\begin{equation*}
V_{i_{D}}=V_{i_{D} j}+V_{i_{D} r}=w_{D} \cdot w_{f_{D}} \cdot w_{i_{D}}\left(w_{j_{i_{D}}} \cdot v_{j_{i_{D}}}+w_{r_{i_{D}}} \cdot v_{r_{i_{D}}}\right) \tag{14}
\end{equation*}
$$

Finally, summing the value of all courses and multiplying the quantity by the binary go/no-go variables, C_{s} and R_{s}, determines the overall value, V_{s}, of schedule s. The binary variable C_{s} is 1 if no student or instructor is assigned to attend any two courses at simultaneous days and times and 0 otherwise. The individual's education plan specifies the courses for which the student is enrolled. This go/no-go criteria is essential to a academic course schedule because of the 18 month window in which all students assigned to AFIT must take all required courses for graduation and all electives that directly support their research. The binary variable R_{s} is 1 if: (1) all courses assigned to a room group do not have an enrollment that exceed the capacity of the rooms in that group and, (2) the number of courses scheduled at any time does not exceed the number of rooms available. R_{s} is equal to 0 if either of the above condition is not met.

$$
\begin{equation*}
V_{s}=C_{s} \cdot R_{s}\left(\sum_{i_{D}} V_{i_{D}}\right) \tag{15}
\end{equation*}
$$

Clearly the most valuable schedule can be found by comparing the overall value, V_{s}, of every possible schedule. A Mixed Integer Program is used to make these comparisons and determine the most valuable schedule.

Mixed Integer Program

The formulation of the Mixed Integer Program (MIP) requires the definition of a binary variable $x_{i j k}$, where i is a three-digit course index number, j is a three-digit day/time scenario index and k is a room group index number. A course index number is assigned to each course to be scheduled. A day/time scenario consists of a set of days per week on which a course is taught combined with a time on each day, herein referenced as scenarios.

The scenarios used in this research require identical time periods be used on each day of the week. Additionally, the time periods are of equivalent length equal to 1 hour. These requirements are not essential for the formulation, but reduce the number of possible scenarios and are representative of standard academic course schedule. In general, a course that meets from $0800-0900$ on Monday will meet during the same hours on subsequent days of the week. Table 1 shows the scenarios, by number of hours per week a course meets and an index number assigned to each scenario. When a time range is given, the scenarios are numbered in increasing order as the start hour increases throughout the days of the week.

Table 1: Day/Time Scenarios

	Days of the Week	Start Times (on the hour)	Scenario ID \#
1 Hour Class	M	0800-1600	001-009
	T	0800-1600	010-018
	W	0800-1600	019-027
	R	0800-1600	028-036
	F	0800-1600	037-045
2 Hour Class	M	0800-1500	046-053
	T	0800-1500	054-061
	W	0800-1500	062-069
	R	0800-1500	070-077
	F	0800-1500	078-085
3 or 4 Hour Class	MW	0800-1500	086-093
	TR	0800-1500	094-101
	MR	0800-1500	102-109
	MF	0800-1500	110-117
	TF	0800-1500	118-125
3 Hour Class	MWF	0800-1600	126-134
	MTR	0800-1600	135-143
	MTF	0800-1600	144-152
	MWR	0800-1600	153-161
	MRF	0800-1600	162-170
	TWF	0800-1600	171-179
	TRF	0800-1600	180-188
4 Hour Class	MTWR	0800-1600	189-197
	MTWF	0800-1600	198-206
	MTRF	0800-1600	207-215
	MWRF	0800-1600	216-224
	TWRF	0800-1600	225-233
6 Hour Lab	MW	0900	234
	MW	1300	235
	TR	0900	236
	TR	1300	237
3 Hour Lab	M	0900	238
	M	1300	239
	T	0900	240
	T	1300	241
	W	0900	242
	W	1300	243
	R	0900	244
	R	1300	245

Rooms in the School of Engineering were grouped into categories based on similar capacities, equipment, and their location within the school building. Table 2 shows the room group index number and the actual room numbers that correspond to the grouping.

Table 2: Room Groups

Room Group	Classroom Numbers	Capacity
1	60,62	35
2	$160-163$	30
3	$260-263$	28
4	$172,176 B$	$35 \& 24$
5	64A,164A,176A	10
6	Labs 241,265,121	25
7	Lecture Hall 121	54
8	Lecture Hall 230	54
9	Computer Lab 165	16

Solicitation of Preferences

An electronic questionnaire, which took the instructor through a step by step process, was provided to the instructor of each course, lab and lecture to be scheduled. The questionnaire elicits a first, second and third choice for day/time preferences. The instructors chose a set of days of the week and a time range on those days for the start of their course or courses for each of the three preferences. The time ranges corresponded to five periods within the day. Table 4 shows the ranges and the corresponding start times with that range. In every case, with the exception of MORN, the range contains two start times. These preferences were transformed into scenario index numbers defined in Table 2. For example, if an instructor chose MWF MIDM as a preference, scenarios

127 and 128 are used as indicators of this preference. In effect, each instructor could chose up to six scenarios via the three preferences.

Table 3: Time Ranges

Course Start Time	Time Range
0800	MORN
0900,1000	MIDM
1100,1200	NOON
1300,1400	EAFT
1500,1600	LAFT

In a similar fashion, the questionnaire provided three room group preferences. Additionally, instructors could provide days of the week and time ranges when teaching was of no value. These scenarios are known as non-preferences. This will be discussed further later. Finally, the instructors indicated what contribution the day/time scenario preference and room preference would have on the value of course index number by providing weights, $w_{j i D}$ and $w_{r i D}$.

Each completed questionnaire provided 18 binary variables to the MIP, a combination of 6 scenarios and 3 room group preferences. For example, the variable x0011283 would describe a preference for course 001 of day/time scenario 128 and room group 3. The value of this variable would be determined using equation (14) and the single dimensional value function shown in Figure 5. This value becomes the cost coefficient of the objective function of the MIP.

MIP Formulation

Obviously, a maximization of an objective function made up of the variables produced from the questionnaires would produce a schedule with the greatest overall value. An objective function of this type is of the form of equation (14), which is an additive value function. The use of an additive value function as the objective function does not violate the assumptions of an MIP formulation.

Winston (1994:53) states that a viable objective function must meet two criteria. First, "the contribution to the objective function from each decision variable must be proportional to the decision variable." The fact that the value function is additive and linear satisfies this criteria. Secondly, according to Winston (1994: 53), "the contribution to the objective function for any variable is independent of the values of the other decision variables." As stated in the VFT theoretical presentation, additive value functions require mutual preferential independence of the attributes on which value is evaluated.

Mutual preferential independence is shown for the each attribute $x_{i j k}$ in the following manner. The value of any day/time scenario j and room group k of course i remains constant to the decision maker regardless of the preferences placed on other day/time scenarios and room groups by the remaining instructors. In other words the partition of day/time scenarios and room groups for course i is preferentially independent of the remaining day/time scenarios and room groups for other courses.

However, a schedule that simply maximized the additive value function would most certainly violate one of the go/no-go criteria and therefore be reduced, via equation (15), to an overall value of zero. Therefore, the following MIP formulation restricts the
feasible region to schedules that do not violate the go/no-go criteria. This is done through the use of three distinct types of constraints.

The first set of constraints require that each course is scheduled against one and only one scenario and room combination. The number of these constraints is equal to the total number of courses being scheduled. This set of constraints may possibly produce an MIP that has no feasible solution. If every combination of preference variables violate the other go/no-go criteria then a feasible solution does not exist. To remedy this possibility, a dummy variable, whose contribution to the objective function is zero, is included in this constraint. The dummy variable will, by definition, not violate any of the other constraints. The constraints become:

$$
\begin{equation*}
\sum_{j} \sum_{k} x_{i j k}+x_{i d}=1 \quad \text { for all } \mathrm{i} \tag{16}
\end{equation*}
$$

A second set of constraints insure that no student or instructor conflicts exist through the use of zoning constraints. Patterson and Albright (1975) used similar constraints in assembly line balancing problems. Zoning constraints preclude two sets of variables from using the same resource. Here zoning constraints prevent courses with common students or instructors from being scheduled, either in part or in whole, at simultaneous times on the same day(s). Variables whose course ID shares common students with course i and whose scenario takes place across the same hour and day as any hour and day in scenario j are included in the set $D E C O N_{i j}$. The zoning constraints then become:

$$
\begin{equation*}
M \cdot \sum_{k} x_{i j k}+\sum_{x_{i j k} \in D E C O N_{i j}} x_{i j k} \leq M \quad \text { for all i and } \mathrm{j} \tag{17}
\end{equation*}
$$

where M is a constant greater than the cardinality of $D E C O N_{i j}$. There are i times j number of constraints of this type.

The third set of constraints insure that the number of courses scheduled during any hour of the week in a room group does not exceed the number of rooms in that group. Variables whose room group includes r and whose scenario occurs during time t are included in the set $R O O M_{r} . R M N U M_{r t}$ is a constant defined by the number of rooms in room group r at time t. The constraints then become:

$$
\begin{equation*}
\sum_{x_{i j k} \in R O O M_{n}} x_{i j k} \leq R M N U M_{n} \quad \text { for all } r \text { and } t \tag{18}
\end{equation*}
$$

There are r times t constraints of this type.
The final MIP formulation maximizes the objective function subject to equations (16), (17), (18) and a restriction of the variables as binary. The full MIP formulation is shown below as problem P2.

Problem P2: MIP Formulation
Maximize

$$
\sum_{i} \sum_{j} \sum_{k} c_{i j k} \cdot x_{i j k}
$$

Subject To

$$
\begin{array}{ll}
\sum_{j} \sum_{k} x_{i j k}+x_{i d}=1 & \text { for all } \mathrm{i} \\
M \cdot \sum_{k} x_{i j k}+\sum_{x_{i j k} \in D E C O N_{i j}} x_{i j k} \leq M & \text { for all } \mathrm{i} \text { and } \mathrm{j} \\
\sum_{x_{i j k} \in \text { ROOM }_{n}} x_{i j k} \leq R M N U M_{n} & \text { for all } \mathrm{r} \text { and } \mathrm{t}
\end{array}
$$

$$
x_{i j k}=\{0,1\}
$$

for all i, j, and k

If an instructor fails to provide three preferences for either day/time or room, the scheduler may assign neutral scenario and room preferences to generate variables associated with the course. The neutral scenarios and neutral rooms have a lower value than any of the three preferences (Refer to Figure 5). Moreover, neutral variables are assigned to any course whose dummy variable is chosen in the solution to P 2. The scheduler chooses neutral scenarios from the set of possible scenarios minus preferred scenarios and non-preferred scenarios. Problem P2 can be solved in an iterative fashion until no dummy variables are selected, given a feasible schedule exists. A solution to P2 will provide the schedule with the best overall value for the preferences provided and the neutral variables chosen.

Decision Support System

In conjunction with a main goal of this research, a Decision Support System (DSS) makes implementation of Problem P2 virtually seamless. The Educational Decision Support and Scheduling System (EDSSS) is comprised of three parts: (1) an electronic questionnaire, (2) a problem generator, and (3) the Optimization Subroutine Library (OSL), an IBM MIP solver.

The electronic questionnaire is a menu driven Visual Basic Module run in MS Excel, that can be delivered via E-mail. The module displays a Windows dialogue box through which instructors indicate preferences and non-preferences for days and times as well as preferences for room groups. The questionnaire also solicits the respective
weighting for day/times and room groups. Dropdown menus, containing available days, times and room groups, provide a user-friendly environment for preference selection.

The problem generator is an MS Excel spreadsheet, and uses a suite of modules programmed in Visual Basic. Preferences, obtained via the electronic questionnaire, are arranged into a value table within the problem generator. A course listing, containing the SSN of all students enrolled in each course, is automatically transformed into a course confliction matrix. The course confliction matrix is a square matrix whose rows and columns are made up of the course listing. Element [i,j] equals 1 if course i and course j possess a common student, and 0 otherwise. Similarly, a scenario confliction matrix is a square matrix whose rows and columns are made up of the scenario list. Element [i,j] of the scenario confliction matrix is 1 if scenario i and scenario j share any common hour on any matching day, and 0 otherwise.

The problem generator automatically generates the $D E C O N_{i j}$ and $R O O M_{r t}$ sets. Problem P2 is then generated in Mathematical Programming System (MPS) format. The MPS formulation is transferred to OSL and solved as a maximization MIP. OSL returns the $x_{i j k}$ variables whose value is 1 and a schedule is created. If any dummy variables are returned then new neutral variables are entered into the generator value table and the process is rerun.

RESULTS

The results presented are for the spring quarter at the School of Engineering for AFIT. The spring quarter contains 83 different courses, labs, and group lectures. The school building is divided into the 9 room groups shown in Table 2. The instructors for
each course, lab or lecture were given the opportunity to provide preferences for day/times and rooms. If an instructor is assigned to teach more than one course, lab or lecture, then multiple questionnaires were filled out and preferences were captured for each course. If an instructor did not wish to provide any preferences or did not completely fill out the questionnaire, then neutral preferences were assigned to the instructor by the scheduler. Implementation of Problem P2 for the spring quarter utilizes 1398 binary variables and 953 constraints.

Four different schedules were created. The schedules differed by the weighting assigned to each department, w_{D}. Therefore, only the cost coefficients of the objective function change. The variation in schedules provides the decision maker with a sensitivity of the departmental weighting on the overall value of the schedule, the number of $1^{\text {st }}$ day/time preferences accommodated, and the number of neutral preferences assigned. These measures are considered to provide the most insight into the quality of a schedule. The number of $1^{\text {st }}$ day/time preferences is used, in lieu of room preferences, because the overwhelming majority of instructors gave day/time preferences more weight.

The initial schedule uses an equal weighting for each department. The second schedule's departmental weighting is the percent of courses taught by that department of the total 83 offered by the school. This weighting potentially gives each course equal impact on the overall value. However, if department heads wish to weight a subset of their courses higher than the remaining courses in the department to reward the instructors with a greater opportunity of achieving first preferences, the remaining courses impact are less than the impact of courses whose department weighted all courses
equally. The third schedule uses weighting commensurate with the number of students the courses within that department instruct. The final variation combines the weighting used in the second schedule, however, all group lectures are given their first day/time preference. Table 4 shows the weights used for each scheduling variation.

Table 4: Departmental Weightings

	Departments					
Schedule						
Weighting	ENC	ENG	ENP	ENS	ENV	ENY
Equal	0.167	0.167	0.167	0.167	0.167	0.167
Number of Courses	0.145	0.349	0.205	0.108	0.06	0.133
Number of Students	0.128	0.391	0.203	0.149	0.047	0.082
Number of Courses						
with Lectures Given	0.145	0.349	0.205	0.108	0.06	0.133

Table 5 summarizes the problem generator time, OSL solver time and number of course not scheduled, i.e. assigned a dummy variable. The problem generator and OSL were run on a 200 MHz PC platform using WindowsNT.

Table 5: Summary of Processing Times

Schedule Weighting	Problem Generator CPU Time (sec)	OSL Solver CPU Time (sec)	Number of Courses Not Scheduled
Equal	580	1121	4
Number of Courses	619	1197	4
Number of Students	575	1073	3
Number of Courses with Lectures Given	620	798	4

Table 5 clearly shows that each schedule took less than 30 minutes to generate on a personal computer. The relatively short processing time will allow the scheduler to make new runs if enrollment data changes or instructors are reassigned to different courses. Additionally, any subsequent sensitivity analysis important to the decision maker can be readily provided.

The percentage of courses not scheduled, based on the preference variables, is less than 5% for any of the four schedules. The scheduler can assign new neutral preferences to these courses and rerun the process or, manually schedule the relatively small number of courses that remain unscheduled.

Figure 6 compares the overall value, whose range is 0 to 1 , of the four scheduling variations. Clearly, the overall value is very insensitive to the departmental weighting.

Figure 6: Overall Value of Schedules

Figure 7 shows the value of each department for the four different departmental weightings.

Equal Courses 国Stud 器Lect Giv

Figure 7: Departmental Value of Schedules

The value of ENY shows the most sensitivity to departmental weighting. However, the change in value is still relatively small, amounting to only 0.23 difference from highest value achieved with the equal weighting schedule and the lowest value when the departmental weighting is based upon number of courses. Other departments indicate even less sensitivity to departmental weighting.

Another measure important to the decision maker is the amount of courses whose $1^{\text {st }}$ day/time preference is accommodated. Figure 8 reveals the extent to which $1^{\text {st }}$ day/time preferences were achieve for each department.

Figure 8: Percentage of $1^{\text {st }}$ Day/Time Preferences Accommodated

In most cases, the number of $1^{\text {st }}$ preferences given is from $60 \%-100 \%$. The exception is ENY. Again, little sensitivity is shown to the departmental weighting used to create the schedule. Figure 9 gives some insight to why departments such as ENS have a higher value and number of $1^{\text {st }}$ preferences accommodated than other departments, such as ENY.

Figure 9: Comparison of Neutral Day/Time Assignments to Non-Respondents

Figure 9 shows a clear trend. The number of neutral day/time scenarios scheduled is proportionate to the number of instructors who did not provide any preferences. Neutral day/times are of significantly less value than any of the three preferred day/times and therefore contribute to a lower departmental value. Additionally, if no preferences are provided, $1^{\text {st }}$ preferences cannot be accommodated.

Iterative Approach to a Complete Schedule

In each case, the schedules developed did not achieve a complete working schedule. The scheduling variation based upon departmental weighting proportionate to the number of course taught was chosen for completion. This variation was chosen because is provides the opportunity for equal weighting of all courses throughout the school.

The initial schedule did not schedule 4 courses, because the preferences associated with these course violated one of the go/no-go criteria. Therefore, preferences of these four instructors were changed to neutral preferences by the scheduler. Two additional iterations were required before a completed schedule was achieved. The overall value of this schedule was equal to .84 , slightly higher than the original overall value. The completed schedule can be used to show room utilization throughout the school building. Figure 10, shows the utilization of classrooms, room groups 1-5.

Figure 10: Classroom Utilization for Completed Schedule

Room utilization peaks at the most popular times of day, midmorning and early afternoon. However, room utilization levels during these popular times do not approach 100%. Therefore, any difficulty in scheduling $1^{\text {st }}$ preferences must result from student or instructor conflicts.

CONCLUSIONS

The research presented in this paper addresses four significant goals for academic course scheduling at the School of Engineering for AFIT. The important factors or values effecting the quality of an academic course schedule for the School of Engineering are identified. Metrics are established that measure how well a schedule addresses these
values. A Decision Support System enables the Office of Academic Operations to implement the research and solicit individual preference efficiently. Finally, the research provides an expedient means of solving the academic course scheduling problem for the School of Engineering. The MIP formulation utilizes only a relatively small number of binary variables, allowing an initial solution in less than 30 minutes and a complete working schedule was achieved in less than 2 hours.

Moreover, the benefits of this research are not lost on larger institutions, for which Problem P2 becomes computationally inefficient to solve optimally. Heuristic solutions, using tabu or other search criteria, readily solve MIPs such as Problem P2, achieving working schedules representative of the institution's goals and principles.

Value Focused Thinking enabled the decision maker to decompose a difficult, complex problem into a simple set of values. These values are used to create alternatives and solve the difficult problem. The academic course scheduling problem at the School of Engineering for AFIT is solved in a manner that maximizes the contribution the schedule makes to the institutes values and principles. Clearly, the ability of Decision Analysis and VFT as a viable technique to tackle the academic course scheduling problem and find a solution is validated.

CHAPTER 3

Now that the EDSSS has been used to develop a schedule for the School of Engineering, an obvious extension to this research would create a working schedule for the entire Air Force Institute of Technology. This would require the solicitation of preferences for both the School of Engineering and the School of Logistics. The larger problem would give insight into the upper bound of courses that can be solved using a Mixed Integer Solver.

Additionally, other military institutions such as the Air Force Academy in Colorado Springs or the Military or Naval academies may provide an excellent source for application of this approach. However, this approach is equally applicable to civilian institutions that wish to efficiently create an academic course schedule representative of the values of the varying stakeholders in the academic community.

A second area for extension would be to create a heuristic algorithm that can be incorporated in the existing EDSSS framework. A quick heuristic solver incorporated into EDSSS would alleviate the requirement for an external Mixed Integer Solver. A self-contained scheduling system would allow the simultaneous creation of multiple schedules on different PCs.

The final recommendation would determine the effect student day/time preferences have on the creation of a schedule. Many civilian institutions may be less concerned with obtaining a completely deconflicted schedule, but rather wish to accommodate the majority of students' time/day preferences. Intercollegiate athletic practice, part-time or full-time jobs, and so forth, may make certain day/time scenarios more or less attractive.

APPENDIX A: COMPLETE 1998 SPRING QUARTER SCHEDULE

Below is the completed schedule, assigning all courses to days, times and room group. Individual rooms within each group may be assigned arbitrarily or by departmental policy.

	Course		Instructor	Days	Times	Room Groups
MATH	508	01	BAKER	MTWR	0900-1000	2
MATH	521	01	WOOD	MTWF	0800-0900	5
MATH	633	01	LAIR	MTWF	1300-1400	2
MATH	674	01	CHILTON	MTWR	0900-1000	2
MATH	705	01	OXLEY	MWRF	0900-1000	5
STAT	528	01	REYNOLDS	MWF	1600-1700	3
STAT	528	01	REYNOLDS	T	0800-1000	9
STAT	583	91	CROWN	MTWF	0900-1000	5
STAT	696	01	CROWN	TWF	1300-1400	2
STAT	696	91	CROWN	T	1400-1600	9
STAT	696	02	REID	MWF	1300-1400	2
STAT	696	92	REID	T	1000-1200	9
CSCE	532	01	POTOCZNY	MW	1200-1400	2
CSCE	544	01	POTOCZNY	TF	1000-1200	4
CSCE	595	01	GRAHAM	TF	1400-1600	2
CSCE	595	91	GRAHAM	R	1300-1600	6
CSCE	623	01	BANKS	MW	1400-1600	3
CSCE	646	01	TALBERT	TF	1200-1400	3
CSCE	654	01	RAINES	MW	1400-1600	2
CSCE	656	01	LAMONT	TF	1200-1400	3
CSCE	682	01	STYTZ	TWRF	1600-1700	5
CSCE	683	01	SHOMPER	TF	1400-1600	5
CSCE	686	01	LAMONT	MTRF	0800-0900	4
CSCE	698	01	RAINES	R	1000-1100	7
CSCE	793	01	HARTRUM	MW	1000-1200	4
CSCE	793	91	HARTRUM	R	1100-1200	8
EENG	533	01	MILLER	MW	1000-1200	3
EENG	533	91	MILLER	R	1300-1500	6
EENG	621	01	GUFESTAFSEN	MW	1200-1400	5
EENG	625	01	TERZUOLI	MTWF	1600-1700	6
EENG	629	01	PYATI	MTWF	0900-1000	5
EENG	630	01	COLLINS	MTWF	1400-1500	4
EENG	635	01	LEWANTOWICZ	TR	1000-1200	
EENG	640	01	PATCHER	TF	1100-1300	3
EENG	670	01	TEMPLE	TF	1200-1400	3
EENG	695	01	GELOSH	TF	1300-1500	3
EENG	695	91	GELOSH	R	1300-1600	6
EENG	698	01	TEMPLE	R	1000-1100	8
EENG	700	01	TERZUOLI	R	1200-1300	6
EENG	708	01	PATCHER	MW	1200-1400	3
EENG	766	01	MAYBECK	TF	0900-1100	5

CHEM	585	01	BURGGRAF
CHEM	675	01	WOLF
EVSC	560	01	BURGGRAF
EVSC	670	01	MATHEWS
METG	630	01	ASKUE
METG	630	91	ASKUE
METG	642	01	DUNGEY
METG	798	01	DUNGEY
NENG	560	01	SUSALLA
NENG	631	01	SUSALLA
OENG	620	01	ROH
OENG	650	01	HENGEHOLD
PHYS	519	01	GOLDIZEN
PHYS	542	01	ROH
PHYS	542	91	ROH
PHYS	650	01	BAILEY
PHYS	798	01	LARGENT

OPER	403	01	MILLER
OPER	561	01	BAUER
OPER	561	02	BAILEY
OPER	561	03	MILLER
OPER	601	01	DECKRO
OPER	610	01	CHAN
OPER	610	02	CHRISSIS
OPER	610	03	MOORE
OPER	645	01	KLOBER

EMGT	571	01	GILL
ENVR	503	01	LOFGREN
ENVR	535	01	NIXON
ENVR	621	01	SHELLEY
ENVR	623	01	BLECKMAN

MECH	533	01	AGNES
MECH	605	01	PALAZOTTO
MECH	620	01	POHL
MECH	628	01	LIEBST
MECH	636	01	WIESEL
MECH	642	01	TURCOTTE
MECH	723	01	SPENNY
MENG	531	01	LITTLE
MENG	732	01	KING
SENG	535	01	KRAMER
SENG	665	01	HEISE

APPENDIX B: ELECTRONIC QUESTIONNAIRE SOURCE CODE

This appendix contains the visual basic modules used to generate the electronic questionnaire used by EDSSS to capture faculty day/time preferences and nonpreferences, as well as room group preferences. The modules were written in MS Excel 97.

This subroutine hides specific worksheets when file is opened

```
Sub Auto_Open()
    Worksheets("Data").Visible = False
    DialogSheets("dlgFacultyInput").Visible = False
    DialogSheets("dlgPref1").Visible = False
    DialogSheets("dlgPref2").Visible = False
    DialogSheets("dlgPref3").Visible = False
    DialogSheets("dlgPref4").Visible = False
    DialogSheets("dlgInstr1").Visible = False
    DialogSheets("dlgInstr2").Visible = False
    DialogSheets("dlgInstr3").Visible = False
    DialogSheets("dlgInstr4").Visible = False
    DialogSheets("dlgThanks").Visible = False
    Modules("modQuest").Visible = False
End Sub
```

This subroutine displays hidden worksheeets

```
Sub UnHide()
    Worksheets("Data").Visible = True
    DialogSheets("dlgFacultyInput").Visible = True
    DialogSheets("dlgPref1").Visible = True
    DialogSheets("dlgPref2").Visible = True
    DialogSheets("dlgPref3").Visible = True
    DialogSheets("dlgPref4").Visible \(=\) True
    DialogSheets("dlgInstr1").Visible \(=\) True
    DialogSheets("dlgInstr2").Visible = True
    DialogSheets("dlgInstr3").Visible = True
    DialogSheets("dlgInstr4").Visible = True
    DialogSheets("dlgThanks").Visible = True
    Modules("modQuest").Visible = True
End Sub
```

This subroutine shows the instructions dialogue box
Sub ShowInstructions()
If DialogSheets("dlgInstri").Show = True Then
If DialogSheets("dlgInstr2").Show = True Then

[^0]This subroutine shows the preferences dialogue box and captures the inputs by the user

Sub ShowDialog()

```
With DialogSheets("dlgFacultyInput")
    If .Show = True Then
        Instructor = .EditBoxes("txtInstructor").Text
    Course = .EditBoxes("txtCourse").Text
    Dept = .DropDowns("drpDepartment").Value
    If .OptionButtons("optHour1").Value \(=1\) Then
            With DialogSheets("dlgPref1")
            If .Show = True Then
                    hrPerWeek \(=1\)
                    daysP1 = .DropDowns("drpDaysP1").Value
                    daysP2 = .DropDowns("drpDaysP2").Value
                    daysP3 = .DropDowns("drpDaysP3").Value
                    daysNP1 = .DropDowns("drpDaysNP1").Value
                    daysNP2 = .DropDowns("drpDaysNP2").Value
                    daysNP3 = .DropDowns("drpDaysNP3").Value
                    timeP1 = .DropDowns("drpTimesP1").Value
                    timeP2 \(=\).DropDowns("drpTimesP2").Value
                    timeP3 = .DropDowns("drpTimesP3").Value
                    timeNP1 = .DropDowns("drpTimesNP1").Value
                    timeNP2 = .DropDowns("drpTimesNP2").Value
                    timeNP3 = .DropDowns("drpTimesNP3").Value
                    roomP1 = .DropDowns("drpRoomsP1").Value
                    roomP2 \(=\).DropDowns("drpRoomsP2").Value
                    roomP3 \(=\).DropDowns("drpRoomsP3").Value
                    dayWgt = EditBoxes("txtDayWgt").Text
                    feedbck = .EditBoxes("txtComments").Text
                    DialogSheets("dlgThanks").Show
                    Else
                    Worksheets("INTERFACE").Activate
                    End If
            End With
    End If
    If .OptionButtons("optHour2").Value \(=1\) Then
            With DialogSheets("dlgPref2")
            If .Show \(=\) True Then
                hrPerWeek \(=2\)
                    daysP1 =.DropDowns("drpDaysP1").Value
                    daysP2 = .DropDowns("drpDaysP2").Value
                    daysP3 = .DropDowns("drpDaysP3").Value
                    daysNP1 \(=\).DropDowns("drpDaysNP1").Value
                    daysNP2 \(=\).DropDowns("drpDaysNP2").Value
                    daysNP3 \(=\).DropDowns("drpDaysNP3").Value
                    timePl = .DropDowns("drpTimesP1").Value
                    timeP2 \(=\).DropDowns("drpTimesP2").Value
                    timeP3 = .DropDowns("drpTimesP3").Value
```

```
    timeNP1 = .DropDowns("drpTimesNP1").Value
    timeNP2 = .DropDowns("drpTimesNP2").Value
    timeNP3 = .DropDowns("drpTimesNP3").Value
    roomP1 = .DropDowns("drpRoomsP1").Value
    roomP2 = .DropDowns("drpRoomsP2").Value
    roomP3 = .DropDowns("drpRoomsP3").Value
    dayWgt = .EditBoxes("txtDayWgt").Text
    feedbck = .EditBoxes("txtComments").Text
    DialogSheets("dlgThanks").Show
    Else
        Worksheets("INTERFACE").Activate
        End If
    End With
End If
If .OptionButtons("optHour3").Value = 1 Then
    With DialogSheets("dlgPref3")
        If .Show = True Then
            hrPerWeek = 3
            daysP1 = .DropDowns("drpDaysP1").Value
            daysP2 = .DropDowns("drpDaysP2").Value
            daysP3 = .DropDowns("drpDaysP3").Value
                    daysNP1 = .DropDowns("drpDaysNP1").Value
                    daysNP2 = .DropDowns("drpDaysNP2").Value
                    daysNP3 = .DropDowns("drpDaysNP3").Value
                    timeP1 = .DropDowns("drpTimesP1").Value
                    timeP2 = .DropDowns("drpTimesP2").Value
                    timeP3 = .DropDowns("drpTimesP3").Value
                    timeNP1 = .DropDowns("drpTimesNP1").Value
                    timeNP2 = .DropDowns("drpTimesNP2").Value
                    timeNP3 = .DropDowns("drpTimesNP3").Value
                    roomP1 = .DropDowns("drpRoomsP1").Value
                    roomP2 = .DropDowns("drpRoomsP2").Value
                    roomP3 = .DropDowns("drpRoomsP3").Value
                    dayWgt = .EditBoxes("txtDayWgt").Text
                    feedbck =.EditBoxes("txtComments").Text
                    DialogSheets("dlgThanks").Show
```


Else

```
Worksheets("INTERFACE").Activate
            End If
    End With
End If
If .OptionButtons("optHour4").Value = 1 Then
    With DialogSheets("dlgPref4")
            If .Show = True Then
                hrPerWeek = 4
                daysP1 = .DropDowns("drpDaysP1").Value
                    daysP2 = .DropDowns("drpDaysP2").Value
                    daysP3 = .DropDowns("drpDaysP3").Value
                    daysNP1 = .DropDowns("drpDaysNP1").Value
                    daysNP2 = .DropDowns("drpDaysNP2").Value
                    daysNP3 = .DropDowns("drpDaysNP3").Value
                    timeP1 = .DropDowns("drpTimesP1").Value
                    timeP2 = .DropDowns("drpTimesP2").Value
                    timeP3 = .DropDowns("drpTimesP3").Value
                    timeNP1 = .DropDowns("drpTimesNP1").Value
                    timeNP2 = .DropDowns("drpTimesNP2").Value
```

> timeNP3 = .DropDowns("drpTimesNP3").Value roomP1 = .DropDowns("drpRoomsP1").Value roomP2 = .DropDowns("drpRoomsP2").Value roomP3 = .DropDowns("drpRoomsP3").Value dayWgt $=$.EditBoxes("txtDayWgt").Text feedbck = .EditBoxes("txtComments").Text DialogSheets("dlgThanks").Show Worksheets("INTERFACE").Activate Else End If End With End If

Worksheets("DATA").Cells(3, 1).Value = Instructor
Worksheets("DATA").Cells (3, 2). Value $=$ Course
Worksheets("DATA").Cells(3, 3).Value = Dept
Worksheets("DATA"):Cells(3, 4).Value $=$ hrPerWeek
Worksheets("DATA").Cells(3, 5).Value $=$ dayWgt
Worksheets("DATA").Cells(3, 6).Value = $1-\mathrm{Val}($ dayWgt)
Worksheets("DATA").Cells $(3,7)$. Value $=$ daysP1
Worksheets("DATA").Cells (3, 8).Value = timeP1
Worksheets("DATA").Cells(3, 9).Value = roomP1
Worksheets("DATA").Cells(3, 10).Value = daysP2
Worksheets("DATA").Cells(3, 11).Value $=$ timeP2
Worksheets("DATA").Cells(3, 12).Value = roomP2
Worksheets("DATA").Cells(3, 13).Value = daysP3
Worksheets("DATA").Cells(3, 14).Value $=$ timeP3
Worksheets("DATA").Cells(3, 15).Value $=$ roomP3
Worksheets("DATA").Cells(3, 16).Value = daysNP1
Worksheets("DATA").Cells(3, 17).Value = timeNP1
Worksheets("DATA").Cells(3, 18).Value = daysNP2
Worksheets("DATA").Cells(3, 19).Value $=$ timeNP2
Worksheets("DATA").Cells $(3,20)$. Value $=$ daysNP3
Worksheets("DATA").Cells(3, 21).Value = timeNP3
Worksheets("DATA").Cells(3, 22).Value $=$ feedbck
End If
End With
\rightarrow End Sub

APPENDIX C: PROBLEM GENERATOR SOURCE CODE

This appendix contains the visual basic modules used in the problem generator portion of EDSSS to write the Mixed Integer Program shown by Problem P2 in Mathematical Programming System (MPS) format. The modules were written in MS Excel 97.

This subroutine hides specific spreadsheets when the document is opened

> Sub AutoOpen()
> ThisWorkbook.Activate
> With ActiveWorkbook
> Worksheets(2).Visible $=$ False
> Worksheets(3).Visible $=$ False
> Worksheets(4). Visible $=$ False
> Worksheets(5). Visible $=$ False
> Worksheets(6).Visible $=$ False Worksheets(7).Visible $=$ False
> End With

End Sub
This subroutine unhides the spreadsheets hidden upon opening

```
Sub UnHide()
    ThisWorkbook.Activate
    With ActiveWorkbook
        Worksheets(2).Visible = True
        Worksheets(3).Visible = True
        Worksheets(4).Visible = True
        Worksheets(5).Visible = True
        Worksheets(6).Visible = True
        Worksheets(7).Visible = True
    End With
End Sub
```

This subroutine is the main routine and calls the other main routines in the 'correct order

Sub Schedule()
MsgBox (Now())
Call EdPlans
Call Variables
Call WriteMps
MsgBox (Now())
End Sub
This subroutine puts the Value table into the correct format for

```
'processing.
```

```
Sub FormatTable()
    Worksheets("Vbl Def").Select
    With ActiveSheet
        Set eeRange = Range("M1:R83")
        For Each C In eeRange
            If C.Value <> "" Then
                If Len(LTrim(Str(C.Value))) = 1 Then C.Value = "'00" & LTrim(Str(C.Value))
                If Len(LTrim(Str(C.Value))) = 2 Then C.Value = "0" & LTrim(Str(C.Value))
                If Len(LTrim(Str(C.Value))) = 3 Then C.Value = ""' & LTrim(Str(C.Value))
            End If
            Next C
    End With
End Sub
```

This subroutine writes all the variables in the variable list

```
Sub WriteVbls()
    Worksheets("Vbl Def").Select
    With ActiveSheet
        Set clearRange \(=\) Range("A1:G10000")
        clearRange.ClearContents
        clearRange.Font.Bold = False
        \(\mathrm{i}=1\)
        Do Until Cells \((\mathrm{i}, 10)=" "\)
        \(\mathrm{C}=1+(\mathrm{i}-1) * 18\)
        Cells \((C, 1)\).Value \(=\operatorname{Cells}(i, 10)\).Value
        \(\mathrm{j}=1\)
        Do Until Cells \((\mathrm{i}, 12+\mathrm{j})=\) " Or j \(>6\)
            \(\mathrm{d}=\mathrm{C}+(\mathrm{j}-1) * 3\)
            Cells \((\mathrm{d}, 2)\).Value \(=\operatorname{Cells}(\mathrm{i}, 12+\mathrm{j})\).Value
            If Cells \((\mathrm{i}, 12+\mathrm{j})\).Font.Bold \(=\) True Then
                Cells(d, 2).Font.Bold = True
            End If
            \(\mathrm{k}=1\)
            Do Until Cells(i, \(18+\mathrm{k})=\) " Or k > 3
                \(e=d+k-1\)
                Cells \((\mathrm{e}, 4)\).Value \(=\operatorname{Cells}(\mathrm{i}, 18+\mathrm{k})\).Value
                If Cells \((i, 18+k)\).Font.Bold \(=\) True Then
                        Cells(e, 4).Font.Bold = True
                End If
                Cells \((e, 6)\). Value \(=" x " \& \operatorname{Cells}(i, 10) \& \operatorname{Cells}(i, 12+j) \& \operatorname{Cells}(i, 18+k)\)
                    \(k=k+1\)
            Loop
            \(\mathrm{j}=\mathrm{j}+1\)
        Loop
        \(\mathrm{i}=\mathrm{i}+1\)
        Loop
    End With
End Sub
Writes objective value for each variable
```

 Worksheets("Vbl Def").Select
 With ActiveSheet
 \(\mathrm{i}=1\)
 \(\mathrm{j}=1\)
 Do While i < 10000 And j < 10000
 If Cells(i, 2) <> "" Then
 If Cells(i, 2).Font.Bold = True Then
 ScenValue \(=0.333\)
 Else
 ScenValue \(=\) GetScenValue(i)
 End If
 Cells(i, 3).Value \(=\) ScenValue
 Cells \((i+1,3)\). Value \(=\) ScenValue
 Cells \((\mathrm{i}+2,3)\). Value \(=\) ScenValue
 \(\mathrm{i}=\mathrm{i}+3\)
 Else
 \(i=i+3\)
 End If
 If Cells \((\mathrm{j}, 4)<>\) "" Then
 If Cells \((\mathrm{j}, 4)\).Font.Bold = True Then
 RoomValue \(=0.333\)
 Else
 RoomValue \(=\) GetRoomValue(\(\mathbf{j}\))
 End If
 Cells(j, 5).Value \(=\) RoomValue
 \(\mathrm{j}=\mathrm{j}+1\)
 Else
 \(j=j+1\)
 End If
 Loop
 \(\mathrm{k}=1\)
 \(\mathrm{m}=1\)
 Do While \(\mathrm{k}<10000\)
 If Cells(k, 6) <> "" Then
 impact \(=(\operatorname{Cells}(\mathrm{m}, 11)\). Value \(* \operatorname{Cells}(\mathrm{k}, 3)+\operatorname{Cells}(\mathrm{m}, 12) . V a l u e * \operatorname{Cells}(\mathrm{k}, 5)) *\)
 Cells(m, 22) * 100000
Cells(k, 7). Value $=\operatorname{Int}($ impact $)$
$k=k+1$
Else
$k=k+1$
End If
If $\mathrm{k} \operatorname{Mod} 18=1$ Then $\mathrm{m}=\mathrm{m}+1$
Loop
End With
End Sub
Function GetScenValue(vrow)
$\mathrm{p}=$ vrow $\operatorname{Mod} 18$
If $p=1$ Then GetScenValue $=1$
If $p=4$ Then GetScenValue $=1$
If $p=7$ Then GetScenValue $=0.833$
If $p=10$ Then GetScenValue $=0.833$
If $p=13$ Then GetScenValue $=0.667$
If $p=16$ Then GetScenValue $=0.667$
End Function

```
```

Function GetRoomValue(vrow)
p = vrow Mod 18
If p=1 Then GetRoomValue = 1
If p=2 Then GetRoomValue = 0.833
If p=3 Then GetRoomValue = 0.667
If p=4 Then GetRoomValue = 1
If p=5 Then GetRoomValue = 0.833
If p=6 Then GetRoomValue =0.667
If p=7 Then GetRoomValue = 1
If p=8 Then GetRoomValue =0.833
If p=9 Then GetRoomValue =0.667
If p=10 Then GetRoomValue =1
If p=11 Then GetRoomValue = 0.833
If p=12 Then GetRoomValue = 0.667
If p=13 Then GetRoomValue = 1
If p=14 Then GetRoomValue = 0.833
If p=15 Then GetRoomValue =0.667
If p=16 Then GetRoomValue = 1
If p=17 Then GetRoomValue = 0.833
If p=0 Then GetRoomValue =0.667

```
End Function

This subroutine puts the value list in the correct format
```

Sub FormatList()
Worksheets("Vbl Def").Select
With ActiveSheet
Set ddRange = Range("A1:B10000")
For Each C In ddRange
If C.Value <> "" Then
If Len(LTrim(Str(C.Value))) = 1 Then C.Value = "'00" \& LTrim(Str(C.Value))
If Len(LTrim(Str(C.Value))) = 2 Then C.Value = " 0" \& LTrim(Str(C.Value))
If Len(LTrim(Str(C.Value))) = 3 Then C.Value = "" \& LTrim(Str(C.Value))
End If
Next C
End With
End Sub
Subroutine called by Schedule
Public Sub Variables()
Call FormatTable
Call WriteVbls
Call PutValues
Call FormatList
End Sub
Dim mpsrow As Integer
Dim conCourCol As Integer
Dim conScenCol As Integer
Dim mpsPath As String
Dim mpsFileName As String
Dim numvbls As Integer
Dim numcourses As Integer

```

Dim numscenarios As Integer
Dim scenRange As Range
Dim courRange As Range
Dim vblCourRange As Range
Dim vblScenRange As Range
Dim vblRoomRange As Range
Dim vblVblRange As Range
Sets certain constants provided by the user on the "Code Data" 'spreadsheet
```

Sub GetConstants()
numcourses = Sheets("Code Data").Cells(2, 3)
numscenarios = Sheets("Code Data").Cells(3,3)
numvbls = Sheets("Code Data").Cells(5,3)
mpsPath = Worksheets("Code Data").Cells(6,3)
mpsFileName = Worksheets("Code Data").Cells(7, 3)
Set scenRange = Worksheets("Scenario Confl").Range("A1:IV1")
Set courRange = Worksheets("Course Confl").Range("A1:IV1")
Set vblCourRange = Worksheets("Vbl Def").Range("A1:A1530")
Set vblScenRange = Worksheets("Vbl Def").Range("B1:B1530")
Set vblRoomRange = Worksheets("Vbl Def").Range("D1:D1530")
Set vblVblRange = Worksheets("Vbl Def").Range("F1:F1520")
End Sub

```

This subroutine opens the output file named schedmps.mps where the mps data will be written.
```

Sub OpenOutFile()
mpsFile = mpsPath \& mpsFileName
Open mpsFile For Output As \#9
, 1234567890123456789012345
Print \#9, "NAME SchedMps FREE"
Print \#9, "ROWS"
Print\#9,"N obj"
End Sub

```

This subroutine writes to schedmps the ROWS portion of the. mps file.
- Where:
'axpppij are the one assignment per course "ppp" constraints 'dxpppqqqi are the deconfliction constraints associated with course
, "ppp" and time scenario "qqq"
'rhhg are the room resourse constraints associated with time slot
, "hh" and room group "g"

\section*{Sub WriteRows()}

\section*{Worksheets("Vbl Def").Select}

With ActiveSheet
Writes the single assignments rows
\(\mathrm{i}=1\)
Do Until i > numvbls
If Cells \((i, 6)\). Value \(="\) " Then \(i=i+18\)
Else
```

 Print \#9, " E " \& "a" \& Left(Cells(i, 6), 4) \& "ij"
 \(\mathrm{i}=\mathrm{i}+18\)
 End If
 Loop
Writes the deconfliction rows
$\mathrm{j}=1$
Do Until j> numvbls
If Cells $(j, 6)$. Value $=" "$ Then $j=j+3$
Else
Print \#9, " L " \& "d" \& Left(Cells(j, 6), 7) \& "i"
$\mathrm{j}=\mathrm{j}+3$
End If

```

\section*{Loop}

Writes the room resourse rows, 45 time slots per week \&
9 different room groups
\(\mathrm{k}=1\)
Do Until k>45
\(1=1\)
Do Until l>9
If \(\operatorname{Len}(\operatorname{LTim}(\operatorname{Str}(\mathrm{k})))=1\) Then
timeslot = "0" \& LTrim(Str(k))
Else
timeslot \(=\operatorname{LTrim}(\operatorname{Str}(\mathrm{k}))\)
End If
Print \#9, " L " \& "r" \& timeslot \& 1
\(1=1+1\)
Loop
\(\mathrm{k}=\mathrm{k}+1\)
Loop
End With
End Sub
Retrieves the three digit scenario number "sss" from the variable 'of the type xccc,sss,r

Function IsolateScenario(variable)
IsolateScenario \(=\operatorname{Mid}(\) variable, 5, 3)
End Function
Retrieves the three digit course number "ccc" from the variable 'of the type xccc,sss,r

\section*{Function IsolateCourse(variable)}

IsolateCourse \(=\) Mid \((\) variable, 2,3\()\)
End Function

Matches the current scenario with the same scenario on the
"'Scenario Confl" spreadsheet

\section*{Function ScenarioCol(scenario)}

If TypeName(scenRange.Find(scenario)) = "Range" Then ScenarioCol = scenRange.Find(scenario).column
```

 Else
 ScenarioCol = 9999
 End If
 End Function
Matches the current course with the same course on the
"'Course Confl" spreadsheet
Function CourseCol(courseNumber)
If TypeName(courRange.Find(courseNumber)) = "Range" Then
CourseCol = courRange.Find(courseNumber).column
Else
CourseCol = 9999
End If
End Function
Isolates a single Day from a string of Days
Function EachDay(days, x)
EachDay = Mid(days, x, 1)
End Function
Writes the Initial Columns for the mps file
Sub InitialColumnEntry(ByVal variable, ByVal impact)
Print \#9," " \& variable \& " obj" \& " " \& impact
Print \#9, " " \& variable \& " a" \& Left(variable, 4) \& "ij" \& " 1.0"
Print \#9," " \& variable \& " d" \& Left(variable, 7) \& "i" \& " 100.0"
End Sub
'Writes the deconfliction columns, i.e. any course and time to which
the current variable is conflicted a 1.0 is placed in that column
Sub DeconColumnEntry(ByVal variable)
Dim scenConflicts(1 To 100) As String
Dim courConflicts(1 To 100) As String
'Gets the scenario and course number for the variable
courseNum = IsolateCourse(variable)
scenario = IsolateScenario(variable)
Reads into an array all of the scenarios that conflict with
the current variable's scenario
$\mathrm{i}=3$
scencol $=$ ScenarioCol(scenario)
Do Until Worksheets("Scenario Confl").Cells(i, scencol).Value = "" scenConflicts(i) = Worksheets("Scenario Confl").Cells(i, scencol) $\mathrm{i}=\mathrm{i}+1$
Loop
Reads into an array all of the courses that conflict with the 'current variable's course
$\mathrm{j}=3$
courCol $=$ CourseCol(courseNum)
Do Until Worksheets("Course Confl").Cells(j, courCol).Value = "" courConflicts(j$)=$ Worksheets("Course Confl").Cells(j, courCol)

```
```

 \(\mathrm{j}=\mathrm{j}+1\)
 Loop
 'Checks for both course confliction and scenario confliction
 'and writes the coulumn variable for the conflicted row if
 both course and scenario are indeed conflicted
 Worksheets("Vbl Def").Select
 With ActiveSheet
 \(\mathrm{k}=1\)
 Do While \(\mathrm{k}<=\mathrm{j}-1\)
 If TypeName(vblCourRange.Find(courConflicts(k))) = "Range" Then
 conCourrow \(=\) vblCourRange.Find(courConflicts(k)).row
 \(\mathrm{l}=1\)
 Do While \(1<=\mathrm{i}\)
 endrow \(=\) conCourrow +17
 \(\mathrm{z}=\) conCourrow
 Do While \(\mathrm{z}<=\) endrow And scenConflicts(1) <> ""
 inside \(=\mathrm{i}\)
 If Cells \((z, 2)=\) scenConflicts(l) Then
 Print \#9, " " \& variable \& " " \& "d" \& Left(Sheets("Vbl Def").Cells(z,
 6).Value, 7) \& "i" \& " 1.0 "
$z=$ conCourrow +20
Else
$\mathrm{z}=\mathrm{z}+3$
End If
Loop
$1=1+1$
Loop
End If
$\mathrm{k}=\mathrm{k}+1$
Loop
End With
End Sub
Writes the room resource columns in the. mps file

```
```

Sub RoomColumnEntry(variable)

```
Sub RoomColumnEntry(variable)
    roomgrp \(=\operatorname{Right}(\) variable, 1 )
    roomgrp \(=\operatorname{Right}(\) variable, 1 )
    scenario \(=\) IsolateScenario(variable)
    scenario \(=\) IsolateScenario(variable)
    scencol = ScenarioCol(scenario)
    scencol = ScenarioCol(scenario)
'Gets the days involved in the current scenario
\(i=1\)
scendays \(=\) Sheets("Scenario Confl").Cells(2, scencol)
Determines what hour/day slots the scenario will use
Do While \(\mathrm{i}<=\) Len(scendays)
d = EachDay(scendays, i)
If \(\mathrm{d}=\) " M " Then dayindex \(=1\)
If \(\mathrm{d}=\) " T " Then dayindex \(=10\)
If \(\mathrm{d}=\) " W " Then dayindex \(=18\)
If \(\mathrm{d}=\) " R " Then dayindex \(=26\)
If d = "F" Then dayindex = 34
```

 hour1 = Sheets("Scenario Confl").Cells(3, scencol)
 hour2 \(=\) Sheets("Scenario Confl").Cells(4, scencol)
 hour3 = Sheets("Scenario Confl").Cells(5, scencol)
 'Gives time slot index, from 1 to 45 corresponding to
 'whole hours from M at 0800 (Index 1) to F 1600 (Index 45)
 timeslot \(1=\operatorname{LTrim}(\operatorname{Str}((\) dayindex \(+(\) hour \(1-8))))\)
 If Len(timeslot 1\()=1\) Then timeslot \(1=" 0 "+\) timeslot 1
 RoomConl = "r" + timeslot \(1+\) roomgrp
 Print \#9, " " \& variable \& " " \& RoomCon1 \& " 1.0"
 If hour2 <> "0" Then
 timeslot2 \(=\operatorname{LTrim}(\operatorname{Str}((\) dayindex \(+(\) hour2 -8\())))\)
 If Len(timeslot2) \(=1\) Then timeslot2 \(=\) " \(0 "+\) timeslot2
 RoomCon2 = "r" + timeslot2 + roomgrp
 Print \#9, " " \& variable \& " " \& RoomCon2 \& " 1.0"
 End If
If hour3 <> "0" Then
timeslot3 $=\operatorname{LTrim}(\operatorname{Str}(($ dayindex $+($ hour3 -8$))))$
If Len(timeslot 3$)=1$ Then timeslot $3=" 0 "+$ timeslot 3
RoomCon3 = "r" + timeslot $3+$ roomgrp
Print \#9," " \& variable \& " " \& RoomCon3 \& " 1.0"
End If
$i=i+1$
Loop
End Sub
Writes the COLUMNS portion of the. mps File

Sub WriteColumns()

Print \#9, "COLUMNS"

Tells solver, all the variable will be integer

Print \#9," MARK000 'MARKER' ${ }^{\prime \prime}$ INTORG"

Counter for number of variables
$\mathrm{i}=1$
Do While i <= numvbls
variable = Sheets("Vbl Def").Cells(i, 6).Value
If variable $=$ " " Then

$$
\mathrm{i}=\mathrm{i}+1
$$

Else impact $=$ Sheets("Vbl Def").Cells(i, 7).Value
Call InitialColumnEntry(variable, impact)
Call DeconColumnEntry(variable)
Call RoomColumnEntry(variable)

$$
\mathrm{i}=\mathrm{i}+1
$$

End If

Loop

Writes the neurtal variables

$\mathrm{j}=1$

Do While j <= numvbls
If Sheets("Vbl Def").Cells(j, 6).Value <> "" Then variable $=$ Sheets("Vbl Def").Cells(j, 6).Value Print \#9," " \& Left(variable, 4) \& "000n" \& " " \& "a" \& Left(variable, 4) \& "ij" \& "
1.0"
$j=j+18$
End If
Loop
Print \#9," MARK001 'MARKER' TNTEND"
End Sub
Determines the number of rooms in the room group "grp"

> Function GetRoomcap(grp)
> If grp $=1$ Then GetRoomcap $=2$
> If $\operatorname{grp}=2$ Then GetRoomcap $=4$
> If grp $=3$ Then GetRoomcap $=4$
> If grp $=4$ Then GetRoomcap $=2$
> If grp $=5$ Then GetRoomcap $=3$
> If grp $=6$ Then GetRoomcap $=3$
> If grp $=7$ Then GetRoomcap $=1$
> If grp $=8$ Then GetRoomcap $=1$
> If grp $=9$ Then GetRoomcap $=1$

End Function
${ }^{W}$ Writes the RHS portion of the. mps file
Sub WriteRHS()
Worksheets("Vbl Def").Select
With ActiveSheet
Print \#9, "RHS"
Writes the single assignments rhs
$\mathrm{i}=1$
Do Until i > numvbls
If Cells $(\mathrm{i}, 6)$. Value $="$ " Then $i=i+18$
Else
Print \#9," rhs " \& "a" \& Left(Cells(i, 6), 4) \& "ij" \& " 1.0" $\mathrm{i}=\mathrm{i}+18$
End If
Loop
Writes the deconfliction rhs

```
j=1
Do Until j > numvbls
    If Cells(j, 6).Value = "" Then
        j=j+3
    Else
        Print #9," rhs " & "d" & Left(Cells(j, 6), 7) & "i" & " 100.0"
        j=j + 3
    End If
Loop
Writes the room resourse rhs, 45 time slots per week &
9 different room groups
k=1
Do Until k > 45
        l=1
        Do Untill>9
        If Len(LTrim(Str(k))) = 1 Then
            timeslot = "0" & LTrim(Str(k))
            Else
                timeslot = LTrim(Str(k))
            End If
            roomcap = GetRoomcap(1)
            Print #9," rhs " & "r" & timeslot & l & " " & roomcap
            l=1 +1
        Loop
        k=k +1
Loop
```

End With
End Sub
'Closes the output file mpsfile
Sub CloseOutFile()
Print \#9, "ENDATA"
Close \#9
End Sub
Public Sub WriteMps()
Call GetConstants
Call OpenOutFile
Call WriteRows
Call WriteColumns
Call WriteRHS
Call CloseOutFile
End Sub
'Variables used by two or more subroutines in this module
Dim maxstudents As Integer
Dim numcours As Integer
This subroutine combines the course name and number and section
Sub CombineDeptNumber()
$i=1$
Worksheets("Ed Plans").Select
With ActiveSheet
Do While Cells(i, 2).Value <> ""
Cells(i, 8).Value = Cells(i, 2).Value \& " " \& Cells(i, 3).Value \& Cells(i, 4).Value$\mathrm{i}=\mathrm{i}+1$
Loop
End With
End Sub
This subroutine develops the course deconfliction matrix rows
Sub DevelopCourseConflicts()
$\mathrm{i}=1$
$r=1$
maxstudents $=0$
Set clearRange = Worksheets("Course SSNs").Range("A1:IV3000")
clearRange.Clear
Worksheets("Ed Plans").Select
With ActiveSheet
Do While Cells(i, 8).Value <> ""

 course \(=\) Cells(i, 8).Value
 \(\mathrm{j}=0\)
 \(\mathrm{m}=\mathrm{i}\)
 Do While Cells(m, 8).Value = course
 \(\mathrm{j}=\mathrm{j}+1\)
 \(\mathrm{m}=\mathrm{m}+1\)
 Loop
 If \(\mathrm{j}>\) maxstudents Then maxstudents \(=\mathrm{j}\)
 Worksheets("Course SSNs").Cells(r, 1).Value \(=\) Cells(i, 8).Value
 Worksheets("Course SSNs").Cells(r, 2).Value = Cells(i, 1).Value
 \(1=\mathrm{i}\)
 \(\mathrm{k}=3\)
 Do While \(1<i+j\)
 Worksheets("Course SSNs").Cells(r, k).Value = Cells(1, 5).Value
 \(1=1+1\)
 \(\mathrm{k}=\mathrm{k}+1\)
 Loop
 \(i=i+j\)
 \(\mathrm{r}=\mathrm{r}+1\)
 Loop
 End With
 End Sub
This subroutine formats the matrix area
Sub InsertRows()
endrange $=$ maxstudents +2
Worksheets("Course SSNs").Select
With ActiveSheet
Set \times Range $=$ Range(Cells(1, endrange), Cells(endrange, endrange))
xRange.Select
Selection.EntireRow.Insert
End With
End Sub
This subroutine lists the columns portion of the matrix

```
Sub Transpose()
    endrange = maxstudents +2
    Worksheets("Course SSNs").Select
    With ActiveSheet
        blanks =0
        i=1
        Do Until Cells(i, 1) <> ""
        blanks = blanks + 1
        i=i+1
    Loop
    Do Until Cells(i, 1)=""
        courses = courses + 1
        i=i + 1
    Loop
    numcours = courses
    Set zRange = Range(Cells(blanks + 1,1), Cells(blanks + courses, endrange))
    zRange.copy
    Cells(1, (endrange + 2)).Select
    Selection.PasteSpecial Paste:=xlAll, Operation:=xlNone, SkipBlanks:=False _
    ,Transpose:=True
    End With
End Sub
```

'This subroutine fills in the course deconfliction matrix

Sub WriteMatrix()

$\mathrm{i}=$ maxstudents +3
Worksheets("Course SSNs").Select
With ActiveSheet
Do Until Cells(i, 1) = "" $\mathrm{j}=3$
Do Until Cells $(\mathrm{i}, \mathrm{j})=$ ""
$\mathrm{k}=$ maxstudents +4
Do Until Cells $(1, k)$.Value $=" "$ $1=3$
Do While $\mathrm{l}<=$ maxstudents +2
If Cells (i, j).Value $=\operatorname{Cells}(l, k)$.Value Then
Cells $(\mathbf{i}, \mathrm{k})=1$
End If
$1=1+1$
Loop
$\mathrm{k}=\mathrm{k}+1$
Loop
$\mathrm{j}=\mathrm{j}+1$
Loop
$\mathrm{i}=\mathrm{i}+1$
Loop
End With
End Sub

This subroutine writes the confliction lists for each course

Sub WriteCourConflicts()

maxstudents $=36$

numcours $=83$
Worksheets("Course SSNs").SelectWith ActiveSheet
$\mathrm{k}=0$
Set courseIDRange $=$ Range(Cells($2,($ maxstudents +4$)$), Cells(2,247$)$)
courseIDRange.copy
Worksheets("Course Confl").Select
With ActiveSheet
Cells(1, 1).Select
ActiveSheet.Paste
End With
Worksheets("Course SSNs").Select
Set matrixRange $2=$ Range $($ Cells(maxstudents +3 , maxstudents +4), Cells(maxstudents +
numcours +3 , maxstudents + numcours +4))
matrixRange2.Select
For Each C In matrixRange2
If C . Value $=1$ Then
$\mathrm{i}=$ C.row
$\mathrm{j}=$ C.column
If Cells(i, 2) <> Cells $(2, \mathrm{j})$ Then
listColumn $=\mathrm{j}-($ maxstudents +3$)$
Worksheets("Course Confl").Select
With ActiveSheet
Range(Cells(3, listColumn), Cells(103, listColumn)).copy
Cells(4, listColumn).Select
ActiveSheet.Paste
End With
Worksheets("Course Confl").Cells(3, listColumn).Value = Worksheets("Course
SSNs").Cells(i, 2).Value
Worksheets("Course SSNs").Select
End If
End If
Next C
End With
End Sub
This subroutine calls the other subroutines in this model to develop
the course deconfliction matrix and lists

- Public Sub EdPalns()
MsgBox Now()
Call CombineDeptNumber
Call DevelopCourseConflicts
Call InsertRows
Call Transpose
Call WriteMatrix
Call WriteCourConflicts
MsgBox Now()
End Sub

APPENDIX D: OSL OUTPUT FOR "EQUAL WEIGHTING" SCHEDULING

VARIATION

Run \# 1 - Scheduling Variation with Departments Weighted Equally

EKK0064I	711	x3062379	BS	1.00000000
EKK0064I	723	x3071932	FX	1.00000000
EKK0064I	734	x3080267	BS	1.00000000
EKK0064I	739	x3090885	FX	1.00000000
EKK0064I	754	x3100955	BS	1.00000000
EKK0064I	772	x3111992	FX	1.00000000
EKK0064I	796	x3122283	FX	1.00000000
EKK0064I	811	x3132002	FX	1.00000000
EKK0064I	829	x3141322	FX	1.00000000
EKK0064I	847	x3152452,	FX	1.00000000
EKK0064I	861	x3161911 ${ }^{\text {² }}$	FX	1.00000000
EKK0064I	871	x3170017	FX	1.00000000
EKK0064I	885	$\times 4010767$	FX	1.00000000
EKK0064I	887	x4020974	FX	1.00000000
EKK0064I	908	x4030884	FX	1.00000000
EKK0064I	926	$\times 4040881$	FX	1.00000000
EKK0064I	944	$\times 4050305$	FX	1.00000000
EKK0064I	962	$\times 4062275$	FX	1.00000000
EKK0064I	977	$\times 4070924$	FX	1.00000000
EKK0064I	992	$\times 4080914$	FX	1.00000000
EKK0064I	1010	$\times 4090944$	FX	1.00000000
EKK0064I	1037	$\times 5010901$	FX	1.00000000
EKK0064I	1046	$\times 5020202$	FX	1.00000000
EKK0064I	1070	$\times 5030993$	FX	1.00000000
EKK0064I	1085	$\times 5040963$	FX	1.00000000
EKK0064I	1103	x5051263	FX	1.00000000
EKK0064I	1121	x6011323	FX	1.00000000
EKK0064I	1145	x6020975	FX	1.00000000
EKK0064I	1154	$\times 6030865$	FX	1.00000000
EKK0064I	1172	x6040945	FX	1.00000000
EKK0064I	1192	$\times 6050861$	FX	1.00000000
EKK0064I	1223	$\times 6060893$	FX	1.00000000
EKK0064I	1235	x 6072013	FX	1.00000000
EKK0064I	1247	x6082003	FX	1.00000000
EKK0064I	1265	x6091003	FX	1.00000000
EKK0064I	1287	x6102417	FX	1.00000000
EKK0064I	1301	x 6111913	FX	1.00000000
EKK0064I	1336	x209000n	FX	1.00000000
EKK0064I	1338	x 211000 n	FX	1.00000000
EKK0064I	1342	x215000n	FX	1.00000000
EKK0064I	1348	x221000n	FX	1.00000000

[^1][^2]
APPENDIX E: OSL OUTPUT FOR "NUMBER OF COURSES WEIGHTING"

SCHEDULING VARIATION

Run \# 2 - Scheduling Variation where Department Weights based upon Number of Courses being taught.

EKK0008I Description of Problem SchedMps
EKK0016I - Matrix has 953 rows, 1398 columns and 13830 entries
EKK0009I Problem Status
EKK0006I Optimization Subroutine Library Version 1.3 (76162)
Page 62
EKK0001I Iteration Number: 65817; Objective Value:
83163.00--Optimal

EKK0064I	629	x3012091	BS	1.00000000
EKK0064I	650	x3022045	FX	1.00000000
EKK0064I	668	x3032101	FX	1.00000000
EKK0064I	677	x3042315	BS	1.00000000
EKK0064I	696	x3050511	FX	1.00000000
EKK0064I	711	x3062379	BS	1.00000000
EKK0064I	723	x3071932	FX	1.00000000
EKK0064I	732	x3080277	BS	1.00000000
EKK0064I	739	x3090885	BS	1.00000000
EKK0064I	.754	x3100955	BS	1.00000000
EKK0064I	772	x3111992 ${ }^{\text {² }}$	FX	1.00000000
EKK0064I	796	$\times 3122283$	FX	1.00000000
EKK0064I	813	x3132004	FX	1.00000000
EKK0064I	829	x3141322	FX	1.00000000
EKK0064I	847	x3152452	FX	1.00000000
EKK0064I	859	$\times 3161912$	BS	1.00000000
EKK0064I	881	x3170067	BS	1.00000000
EKK0064I	883	x4010757	BS	1.00000000
EKK0064I	887	x4020974	BS	1.00000000
EKK0064I	908	x4030884	BS	1.00000000
EKK0064I	926	x4040881	BS	1.00000000
EKK0064I	941	x4050295	FX	1.00000000
EKK0064I	962	x4062275	FX	1.00000000
EKK0064I	977	$\times 4070924$	FX	1.00000000
EKK0064I	995	x4080924	FX	1.00000000
EKK0064I	1010	x4090944	FX	1.00000000
EKK0064I	1039	$\times 5010905$	FX	1.00000000
EKK0064I	1046	$\times 5020202$	FX	1.00000000
EKK0064I	1073	x5031003	FX	1.00000000
EKK0064I	1082	x5040953	FX	1.00000000
EKK0064I	1103	$\times 5051263$	FX	1.00000000
EKK0064I	1121	x6011323	FX	1.00000000
EKK0064I	1142	x6020965	FX	1.00000000
EKK0064I	1154	$\times 6030865$	FX	1.00000000
EKK0064I	1172	$\times 6040945$	FX	1.00000000
EKK0064I	1190	x6050865	FX	1.00000000
EKK0064I	1217	x6060883	FX	1.00000000
EKK0064I	1236	$\times 6072012$	FX	1.00000000
EKK0064I	1250	$\times 6082033$	FX	1.00000000
EKK0064I	1265	$\times 6091003$	FX	1.00000000
EKK0064I	1307	x6111933	FX	1.00000000
EKK0064I	1336	$\times 209000 n$	FX	1.00000000
EKK0064I	1338	x 211000 n	FX	1.00000000
EKK0064I	1348	x221000n	FX	1.00000000
EKK0064I	1397	x610000n	FX	1.00000000

[^3][^4]
APPENDIX F: OSL OUTPUT FOR "NUMBER OF STUDENTS WEIGHTING"

SCHEDULING VARIATION

EKK0064I	650	x3022045	FX	1.00000000
EKK0064I	666	x3032095	BS	1.00000000
EKK0064I	677	x3042315	BS	1.00000000
EKK0064I	698	x3050523	FX	1.00000000
EKK0064I	710	x3062369	BS	1.00000000
EKK0064I	723	x3071932	FX	1.00000000
EKK0064I	734	x3080267	FX	1.00000000
EKK0064I	739	x3090885	BS	1.00000000
EKK0064I	754	x3100955	FX	1.00000000
EKK0064I	772	x3111992	BS	1.00000000
EKK0064I	796	x3122283	FX	1.00000000
EKK0064I	822	x3132034	FX	1.00000000
EKK0064I	829	x3141322	FX	1.00000000
1EKK0011I	Column	Section		
EKK0063I		. .Name..	Stat	.Activity.
EKK0064I	847	x3152452	FX	1.00000000
EKK0064I	861	x3161911	FX	1.00000000
EKK0064I	882	x3170068	FX	1.00000000
EKK0064I	883	x4010757	FX	1.00000000
EKK0064I	887	x4020974	FX	1.00000000
EKK0064I	908	x4030884	FX	1.00000000
EKK0064I	926	x4040881	FX	1.00000000
EKK0064I	944	x4050305	FX	1.00000000
EKK0064I	962	$\times 4062275$	FX	1.00000000
EKK0064I	977	x4070924	FX	1.00000000
EKK0064I	995	x4080924	FX	1.00000000
EKK0064I	1010	x4090944	FX	1.00000000
EKK0064I	1038	x5010902	FX	1.00000000
EKK0064I	1046	$\times 5020202$	FX	1.00000000
EKK0064I	1073	$\times 5031003$	FX	1.00000000
EKK0064I	1082	$\times 5040953$	FX	1.00000000
EKK0064I	1103	$\times 5051263$	FX	1.00000000
EKK0064I	1121	x6011323	FX	1.00000000
EKK0064I	1142	x6020965	FX	0.99999993
EKK0064I	1143	x6020964	FX	0.655040660602D-07
EKK0064I	1154	$\times 6030865$	FX	1.00000000
EKK0064I	1172	$\times 6040945$	FX	1.00000000
EKK0064I	1191	x6050863	FX	1.00000000
EKK0064I	1217	x6060883	FX	1.00000000
EKK0064I	1235	$\times 6072013$	FX	1.00000000
EKK0064I	1250	$\times 6082033$	FX	1.00000000
EKK0064I	1265	x6091003	FX	1.00000000
EKK0064I	1307	x6111933	FX	1.00000000
EKK0064I	1338	x 211000 n	FX	1.00000000
EKK0064I	1348	x 221000 n	FX	1.00000000
EKK0064I	1397	$\times 610000 \mathrm{n}$	FX	1.00000000

Page 12
*** An optimal integer solution has been found ***

APPENDIX G: OSL OUTPUT FOR "NUMBER OF COURSE WITH LECTURES

GIVEN WEIGHTING" SCHEDULING VARIATION

Run \# 3 - Department Weights based upon Number of Courses being taught with each
department's siminars weighted highly to insure scheduling at first preference

EKK0008I Description of Problem SchedMps
EKK0016I Matrix has 953 rows, 1398 columns and 13830 entries
EKK0009I Problem Status
EKK0001I Iteration Number: 39012; Objective Value:
155038.0--Optimal

1EKK0011I Columns Section
Page 12

EKK0063I
EKK0064I 3
EKK0064I
EKK0064
EKK0064
EKK0064I
EKK0064I
EKK0064I
EKK0064I
EKK0064
EKK0064I
EKK0064I
EKK0064
EKK0064
EKK0064
EKK0064I
EKK0064I
EKK0064I
EKK0064I
EKK0064
EKK0064I
EKKO064I
EKK0064I
EKK0064I EKK0064 EKK0064 EKK0064I EKK0064 EKK0064I EKK0064I

3
37
55
73
91
109
115
133
152
157
176
184
202
220
235
256
280
299
$\times 2070924$
316×2081223
379
$\times 2101243$
$\times 2120307$
384×2130884
415 x2140317
420
433
451
465
474
492
510
534
546
561
567
569
590
605

Name.	Stat	Acti
x1011903	BS	1.00000000
x1022055	FX	1.00000000
x1032032	FX	1.00000000
x1041902	FX	1.00000000
x1052175	FX	1.00000000
x1061333	BS	1.00000000
$\times 1070549$	FX	1.00000000
$\times 1081995$	BS	1.00000000
x1091762	FX	1.00000000
x1100609	BS	1.00000000
x1111273	FX	1.00000000
x1120569	FX	1.00000000
x2010902	FX	1.00000000
x2021204	FX	1.00000000
x2031242	BS	1.00000000
x2042456	BS	1.00000000
x2050923	FX	1.00000000
x2061223	BS	1.00000000
$\times 2070924$	FX	1.00000000
x2081223	BS	1.00000000
$\times 2101243$	BS	1.00000000
x2120307	BS	1.00000000
x2130884	BS	1.00000000
x2140317	FX	1.00000000
$\times 2150883$	FX	1.00000000
$\times 2160766$	FX	1.00000000
$\times 2170903$	FX	1.00000000
$\times 2182066$	FX	1.00000000
x2191995	FX	1.00000000
$\times 2202044$	FX	1.00000000
x2221213	BS	1.00000000
$\times 2231223$	FX	1.00000000
x2241243	BS	1.00000000
x2252456	BS	1.00000000
$\times 2260308$	BS	1.00000000
x2270326	BS	1.00000000
$\times 2280903$	BS	1.00000000
$\times 2291195$	FX	1.00000000
$\times 3012091$	FX	1.00000000

EKK0064I	650	x3022045	FX	1.00000000	
EKK0064I	668	x3032101	FX	1.00000000	
EKK0064I	678	$\times 3042311$	FX	1.00000000	
EKK0064I	695	$\times 3050513$	BS	1.00000000	
EKK0064I	711	$\times 3062379$	FX	1.00000000	
EKK0064I	723	$\times 3071932$	BS	1.00000000	
EKK0064I	732	$\times 3080277$	FX	1.00000000	
EKK0064I	739	$\times 3090885$	BS	1.00000000	
EKK0064I	754	$\times 3100955$	FX	1.00000000	
EKK0064I	772	$\times 3111992$	BS	1.00000000	
EKK0064I	796	x3122283'	FX	1.00000000	
EKK0064I	812	x3132003	FX	1.00000000	
EKK0064I	829	x3141322	FX	1.00000000	
EKK0064I	847	x 3152452	FX	1.00000000	
1EKK0011I	Column	Section			Page 13
EKK0063I		. .Name. .	StatActivity.	
EKK0064I	861	x3161911	FX	1.00000000	
EKK0064I	881	x3170067	FX	1.00000000	
EKK0064I	883	x4010757	FX	1.00000000	
EKK0064I	887	x4020974	FX	1.00000000	
EKK0064I	908	x4030884	FX	1.00000000	
EKK0064I	926	x4040881	FX	1.00000000	
EKK0064I	941	x4050295	FX	1.00000000	
EKK0064I	962	x 4062275	FX	1.00000000	
EKK0064I	977	x4070924	FX	1.00000000	
EKK0064I	992	x4080914	FX	1.00000000	
EKK0064I	1010	x4090944	FX	1.00000000	
EKK0064I	1037	x5010901	FX	1.00000000	
EKK0064I	1046	$\times 5020202$	FX	1.00000000	
EKK0064I	1073	x5031003	FX	1.00000000	
EKK0064I	1082	x5040953	FX	1.00000000	
EKK0064I	1103	x5051263	FX	1.00000000	
EKK0064I	1124	x6011273	FX	1.00000000	
EKK0064I	1145	x6020975	FX	1.00000000	
EKK0064I	1154	x 6030865	FX	1.00000000	
EKK0064I	1174	x6040942	FX	1.00000000	
EKK0064I	1199	x6050895	FX	1.00000000	
EKK0064I	1211	x6062003	FX	1.00000000	
EKK0064I	1232	x6072003	FX	1.00000000	
EKKK0064I	1262	x6090993	FX	1.00000000	
EKK0064I	1283	$\times 6102396$	FX	1.00000000	
EKK0064I	1310	x6111943	FX	1.00000000	
EKK0064I	1336	x 209000 n	FX	1.00000000	
EKK0064I	1338	$\times 211000 \mathrm{n}$	FX	1.00000000	
EKK0064I	1348	$\times 221000 \mathrm{n}$	FX	1.00000000	
EKK0064I	1395	$\times 608000 n$	FX	1.00000000	

APPENDIX H: EDSSS USER MANUAL

Preface

This user manual is written in support of the Educational Decision Support and Scheduling System (EDSSS), developed 1Lt Shane Knighton, as part of the thesis research entitled "A Value Focused Approach to Academic Course Scheduling." This manual assumes the user has a working knowledge of MicroSoft Excel 97 and DOS. The programs use code written in Visual Basic within MS Excel. The user operating EDSSS is assumed to be the academic course scheduler and is herein referred to as the scheduler. Notes and Cautions are provided in italics throughout the manual. A Note is used to provide the user with information that will help EDSSS run smoothly, a Caution provides information that may cause the program to execute incorrectly.

Introduction

The Educational Decision Support and Scheduling System (EDSSS) assigns academic courses for the School of Engineering (EN) of AFIT to days, times, and rooms. The system will not allow student or instructor conflicts and will not utilize more rooms than are available within the EN building. If more in-depth information is required about the methodology used by EDSSS, the user is referred to the thesis by 1Lt Shane Knighton entitled "A Value Focused Thinking Approach to Academic Course Scheduling."

EDSSS is comprised of three different programs:

1) Electronic Questionnaire
2) Mixed Integer Program Problem Generator

3) Optimization Subroutine Library

The flowchart on the following page gives the user an overview of how each of these programs interact. A more detailed description of each program is provided.

Prior to using EDSSS to produce an academic schedule, a finalized course listing from each department is required. The course listing must contain the name of the instructor for each course listed. The scheduler must then assign a three-digit course ID number to each of the courses.

NOTE: It is suggested that the ID numbers be assigned in the following manner. The first digit of a course offered by ENC is 1; the final two digits are assigned as the order listed on the proposed course listing. In a similar fashion, the first digit of courses offered by ENG, ENP, ENS, ENV, and ENY will be 2, 3, 4, 5, and 6 respectively.

Additionally, a query from the Education Plans database is needed prior to scheduling. The query must list the department, course number, section/lab number, and the SSN of all students enrolled in that course. The course ID number is added to the first column of the list. The ID number must be repeated for every SSN in the same course. The query must be in the form shown by Figure 1 of this manual.

Caution: The list must be sorted by ID number. All identical ID numbers must be grouped together in the list. The program assumes that if a new ID number is encountered, all SSN for the previous ID number have been counted.

Caution: The Ed Plan List must contain information for every course given an ID. If the list is not complete, the scheduler must include the missing courses in the list prior to scheduling. The scheduler must enter the missing courses in the same format as the rest of the list, however no SSN should be given.

101	MATH	508	01	002-78-1969
101	MATH	508	01	061-58-6522
101	MATH	508	01	116-56-4832
101	MATH	508	01	226-27-8496
101	MATH	508	01	408-55-1091
101	MATH	508	01	417-19-0228
101	MATH	508	01	445-68-9745
101	MATH	508	01	526-13-8757
101	MATH	508	01	546-45-5750
102	MATH	521	01	077-68-9156
102	MATH	521	01	152-76-8630
102	MATH	521	01	278-88-7980
102	MATH	521	01	550-29-9749
102	MATH	521	01	558-43-9859
102	MATH	521	01	567-75-3710
103	MATH	633	01	000-000-001
104	MATH	674	01	261-73-9432
104	MATH	674	01	312-94-1786
104	MATH	674	01	504-78-8469
104	MATH	674	01	000-00-002
105	MATH	705	01	000-00-003
106	STAT	528	01	017-62-8627
106	STAT	528	01	023-52-7817
106	STAT	528	01	263-63-8302
106	STAT	528	01	399-68-3166
106	STAT	528	01	414-49-4391
106	STAT	528	01	459-79-1577
106	STAT	528	01	460-33-1803
106	STAT	528	01	480-60-4053
107	STAT	528	91	017-62-8627
107	STAT	528	91	023-52-7817
107	STAT	528	91	263-63-8302
107	STAT	528	91	399-68-3166
107	STAT	528	91	414-49-4391
107	STAT	528	91	459-79-1577
107	STAT	528	91	460-33-1803
107	STAT	528	91	480-60-4053

Figure 1: Example of Ed Plan Query

Electronic Questionnaire

The electronic questionnaire is a set of Windows dialogue boxes which run in MS Excel. The purpose of the questionnaire is to capture the day/time preferences, day/time non-preferences, and room preferences of the instructor for each course to be scheduled. This questionnaire can be delivered to each instructor via E-mail or place in a central location accessible to everyone being scheduled.

Note: Instructors teaching more that one course must fill out a different questionnaire for each course to be scheduled.

The initial screen offers the user two options. Single clicking on the INSTRUCTIONS option button provides instructions on filling out the questionnaire. Single clicking on the FACULTY PREFERENCES option button displays the following dialogue box.

Figure 2: Faculty Preferences Dialogue Box \# 1

The instructors must fill in their name, course, department, and course ID. The ID number should be assigned to each instructor prior to delivering the questionnaire. Additionally, the instructor must indicate the number of hours their course meets per week.

Caution: The number of hours the course meets per week must be indicated correctly.
The choices for day combinations differ according to the number of hours indicated.

Once the information has been entered, single click the OK button, this will automatically display the dialogue box containing the available day/time scenarios. The instructor can fill out the preferences and non-preferences by selecting an entry from the appropriate dropdown list. The day/time weight must be placed in the appropriate box and be within the range of 0 to 1 . An example of the preferences dialogue box is shown in Figure 3 of this manual.

Figure 3: Faculty Preferences Dialogue Box \#2

Note: If no day/time weight is indicated the weighting is selected by the scheduler.

Once the instructor completes the questionnaire, the preferences are put into Range $\mathrm{B} 1: \mathrm{B} 12$ on the PREFERENCES sheet of the electronic questionnaire. This Range is the entry for the course in the Preference Table of the Mixed Integer Problem Generator. The instructor's non-preferences for day/time scenarios are shown in Range E1:E6.

Mixed Integer Problem Generator

The Mixed Integer Problem Generator is an MS Excel spreadsheet using a suite of Visual Basic Modules. The purpose of the problem generator is to construct the Mixed Integer Academic Scheduling Problem in Mathematical Programming System (MPS) format. This file is read by OSL, the Mixed Integer Solver. Open the problem generator in MS Excel 97.

The scheduler is required to update four Ranges before running the problem generator. Initially, the scheduler should enter the weights for each department and the courses to be scheduled on the VALUE HIERARCHY sheet.

Note: The weights for each Department should come from the Dean or his staff, while the weights for each course are given by the respective Department Heads.

Caution: An entry in the Value Hierarchy, i.e. course ID and weight, is required for every course in the Preference Table.

The three remaining Ranges to be updated are located on the CODE DATA sheet. The Ed Plan query, in the format shown by Figure 1 of this manual, should be placed in Range A12:D12. The Preference Table is built by combining the entries from all the instructors' individual preference entries. These entries were obtained via the Electronic Questionnaire, refer to that portion of this manual for further information. The entries are placed on consecutive rows, with the first entry being placed in Range I12:T12.

If the instructor did not completely fill out the questionnaire, the scheduler using neutral preferences can complete the entry. Neutral preferences are defined as the day/time scenarios not given as non-preferences by the instructor via the electronic questionnaire. Neutral preferences for day/time scenarios and room groups must be indicated as such by using bold font for the neutral scenario and room group numbers in the preferences entry for that course.

The final range is located in cells, $\mathrm{C} 2: \mathrm{C} 7$. The number of courses to be scheduled is entered into cell C2. Cells C3:C5 are used by the program and should not be changed. The path and filename of the file created that contains the Mixed Integer Program in MPS is entered in Cells C6:C7. Once all of the above tasks have been completed, single clicking the WRITE MPS FILE button on the CODE DATA sheet creates the MPS file named in cell C7. The following figure shows an updated CODE DATA sheet.

Figure 4: Updated CODE DATA Sheet

Optimization Subroutine Library (OSL), Mixed Integer Solver

OSL is a powerful mixed integer solver from IBM. It is run on a dedicated
WindowsNT workstation in the Center for Modeling, Simulations and Analysis, room
133B in building 640. The solver runs in DOS. The command line to run the solver for the purpose of creating an academic schedule is as follows:

```
oslmslv -maxmin=max -dspace=10000000 -imaxiter=9999999 -maxsols=9999999
<inputfile> outputfile
```

The input filename is the path and filename placed in Cell C6:C7 on the CODE DATA sheet of the problem generator. The user is referred to that section of the manual for
more information. The output filename is user defined and will contain the solution to the Mixed Integer Program. The user is referred to the OSL user manual for further information about OSL.

The solution to the Mixed Integer Program is at the end of the output file. The solution provides the variable names that describe the course scheduled, as well as the day/time scenario and room group to which the course was assigned. The first three digits after the letter ' x ' are the course ID. The next three digits give the day/time scenario, and the last digit the room group. Refer to Tables 1 and 2 for definitions of the various room groups and day/time scenarios. The scheduler simply translates the variables into an academic course schedule. The scheduler assigns specific rooms within a particular room group.

If a variable is returned of the form, $x 122000 \mathrm{n}$, then the course was not scheduled. The scheduler has the choice of scheduling the course manually or rerunning the process. To rerun the process, add or change neutral preferences in the preference entry of the Preference Table for the particular course. The Preference Table is located on the CODE DATA sheet of the problem generator.

Caution: All neutral preferences, for either day/time or rooms, must be in bold font.

Note: Neutral preferences are determined by eliminating the non-preferred day/time scenarios given by the instructor via the electronic questionnaire.

Table 1: Room Groups

Room Group	Classroom Numbers	Capacity
1	60,62	35
2	$160-163$	30
.	$260-263$	28
3	$172,176 \mathrm{~B}$	$35 \& 24$
4	$64 \mathrm{~A}, 164 \mathrm{~A}, 176 \mathrm{~A}$	10
6	Labs 241,265,121	25
7	Lecture Hall 121	54
8	Lecture Hall 230	54
9	Computer Lab 165	16

Table 2: Day/Time Scenarios

	Days of the Week	Start Times (on the hour)	Scenario ID \#
	M	0800-1600	001-009
1 Hour	T	0800-1600	010-018
Class	W	0800-1600	019-027
	R	0800-1600	028-036
	F	0800-1600	037-045
	M	0800-1500	046-053
2 Hour	T	0800-1500	054-061
Class	W	0800-1500	062-069
	R	0800-1500	070-077
	F	0800-1500	078-085
	MW	0800-1500	086-093
3 or 4 Hour	TR	0800-1500	094-101
Class	MR	0800-1500	102-109
	MF	0800-1500	110-117
	TF	0800-1500	118-125
	MWF	0800-1600	126-134
	MTR	0800-1600	135-143
3 Hour	MTF	0800-1600	144-152
Class	MWR	0800-1600	153-161
	MRF	0800-1600	162-170
	TWF	0800-1600	171-179
	TRF	0800-1600	180-188
	MTWR	0800-1600	189-197
4 Hour	MTWF	0800-1600	198-206
Class	MTRF	0800-1600	207-215
	MWRF	0800-1600	216-224
	TWRF	0800-1600	225-233
	MW	0900	234
6 Hour	MW	1300	235
Lab	TR	0900	236
	TR	1300	237
	M	0900	238
	M	1300	239
3 Hour	T	0900	240
Lab	T	1300	241
	W	0900	242
	W	1300	243
	R	0900	244
	R	1300	245

APPENDIX I: PREFERENCE TABLE FOR SPRING QUARTER 98 SCHEDULE

101	1	0	190	191	095	096	119	120	5	2	E
102	0.5	0.5	198	201	205	206	223	224	5	2	1
103	1	0	203	204	205	206	201	202	2	1	3
104	0.8	0.2	190	191	199	200	189	198	2	3	4
105	1	0	217	218	203	204	095	096	5	2	3
106	0.5	0.5	133	134	160	161	178	179	3	1	2
107	0.5	0.5	054	062	070	055	063	071	9		
108	0.75	0.25	199	200	217	218	201	219	5	4	2
109	0.75	0.25	176	177	133	134	178	179	2	3	5
110	1	0	059	060	061	055	056	057	9		
111	1	0	127	128	131	132	133	134	3	4	2
112	0.9	0.1	055	056	059	060	061	054	9		
201	0.8	0.2	089	090	123	124	121	122	2	1	3
202	0.9	0.1	119	120	087	088	121	122	4	1	7
203	0.8	0.2	123	124	091	092	121	122	2	3	1
204	0.5	0.5	245	244	243	241	239	242	6	7	8
205	0.9	0.1	091	092	093	105	106	090	3	4	2
206	0.7	0.3	089	090	121	122	091	123	3	1	4
207	1	0	099	100	091	092	101	093	3	4	2
208	0.9	0.1	119	120	121	122	123	124	3	2	1
209	1	0	100	098	101	099	092	093	5	4	2
210	1	0	123	124	125	093	108	109	5	1	3
211	0.9	0.1	087	088	089	090	091	092	3	5	4
212	0.5	0.5	030						7	8	
213	0.9	0.1	087	088	091	092	089	090	4	3	2
214	0.5	0.5	011	012	013	029	030	031	4	7	8
215	1	0	087	088	091	092	093		3	2	1
216	0.5	0.5	075	076	073	074	071	072	6		
217	1	0	093	091	092	089	090	088	5	3	2
218	- 0.75	0.25	203	204	205	206	201	202	6	4	1
219	1	0	199	200	198	203	204		5	3	2
220	0.99	0.01	203	204	199	200	198		4	3	2
221	1	0	095						5	1	4
222	0.75	0.25	120	121	087	088	089	090	3	2	5
223	0.9	0.1	099	100	121	122	097	098	3	5	1
224	1	0	123	124	121	122	091	092	3	5	2
225	0.5	0.5	245	244	243	241	239	242	6		
226	0.5	0.5	030						8	7	
227	0.5	0.5	032	031	033	030	034	029	6	4	1
228	0.75	0.25	089	090	119	120	121	122	3	2	1
229	1	0	119	120	123	124	087	088	5	1	2
301	0.5	0.5	207	208	209	210	211	212	1	5	4
302	0.8	0.2	199	200	203	204	205	206	5	3	2
303	0.5	0.5	207	208	209	210	211	212	1	5	4

304	1	0	231	230	229	228	227	226	5	1	
305	1	0	051	052	048	047	046		3	1	c
306	1	0	236	237	234	235			9		
307	0.5	0.5	190	191	192	193	194	195	2	3	
308	0.5	0.5	027	026					7	8	
309	1	0	087	088	089	090	091	092	5	1	4
310	1	0	095	096	097	098	099	100	5	1	c
311	0.5	0.5	199	200	208	209	217	218	2	1	5
312	0.5	0.5	226	227	228	229	230	231	3	1	2
313	1	0	199	200	201	202	203	204	2	3	4
314	0.5	0.5	131	132	130	129	128	127	2	1	3
315	0.5	0.5	241	245	242	244			2	1	3
316	1	0	190	191	194	195	189		2	3	1
317	0.5	0.5	001	002	003	004	005	006	7	8	
401	0.5	0.5	075	076					7	8	
402	0.9	0.1	097	098	099	100	095	096	4	3	2
403	0.9	0.1	087	088	099	100	091	092	4	3	2
404	0.9	0.1	087	088	099	100	091	092	1	2	4
405	0.5	0.5	029	030	038	039	002	003	5	7	8
406	0.9	0.1	226	227	228	229	225		5	4	2
407	0.8	0.2	091	092	099	100	087	088	4	2	3
408	0.7	0.3	091	092	099	100	087	088	4	2	3
409	0.8	0.2	094	086	126	095	087	096	4	3	2
501	1	0	087	088	089	090	091	092	1	2	5
502	0.8	0.2	020	021	011	012	029	030	2	3	1
503	0.5	0.5	095	096	099	100	087	088	3	2	1
504	1	0	095	096	097	098	099	100	3	2	1
505	0.5	0.5	086	126	087	088	127	128	3	2	1
601	0.85	0.15	131	132	127	128	099	100	3	2	1
602	0.5	0.5	094	095	096	097	098	099	5	4	3
603	0.5	0.5	086	087	088	089	090	091	5	3	1
604	0.5	0.5	094	095	096	097	098	099	5	4	2
605	0.5	0.5	086	087	088	089	090	091	5	3	1
606	0.9	0.1	199	200	087	088	201	089	3	2	1
607	0.5	0.5	198	199	200	201	202	203	3	2	4
608	0.35	0.65	199	200	203	204	190	191	3	2	4
609	0.5	0.5	099	100	119	120	230	231	3	2	4
610	1	0	238	239	241	240	234	242	6	7	8
611	0.5	0.5	190	191	192	193	194	195	3	2	1

APPENDIX J: ED PLANS QUERY FOR SPRING QUARTER 98 SCHEDULE

101	MATH	508	01	$002-78-1969$
101	MATH	508	01	$061-58-6522$
101	MATH	508	01	$116-56-4832$
101	MATH	508	01	$226-27-8496$
101	MATH	508	01	$408-55-1091$
101	MATH	508	01	$417-19-0228$
101	MATH	508	01	$445-68-9745$
101	MATH	508	01	$526-13-8757$
101	MATH	508	01	$546-45-5750$
102	MATH	521	01	$077-68-9156$
102	MATH	521	01	$152-76-8630$
102	MATH	521	01	$278-88-7980$
102	MATH	521	01	$550-29-9749$
102	MATH	521	01	$558-43-9859$
102	MATH	521	01	$567-75-3710$
103	MATH	633	01	$000-000-001$
104	MATH	674	01	$261-73-9432$
104	MATH	674	01	$312-94-1786$
104	MATH	674	01	$504-78-8469$
104	MATH	674	01	$000-00-002$
105	MATH	705	01	$000-00-003$
106	STAT	528	01	$017-62-8627$
106	STAT	528	01	$023-52-7817$
106	STAT	528	01	$263-63-8302$
106	STAT	528	01	$399-68-3166$
106	STAT	528	01	$414-49-4391$
106	STAT	528	01	$459-79-1577$
106	STAT	528	01	$460-33-1803$
106	STAT	528	01	$480-60-4053$
107	STAT	528	91	$017-62-8627$
107	STAT	528	91	$023-52-7817$
107	STAT	528	91	$263-63-8302$
107	STAT	528	91	$399-68-166$
107	STAT	528	91	$414-49-4391$
107	STAT	528	91	$459-79-1577$
107	STAT	528	91	$460-33-1803$
107	STAT	528	91	$480-60-4053$
108	STAT	583	01	$269-70-2117$
108	STAT	583	01	$453-13-1389$
108	STAT	583	01	$529-43-6216$
108	STAT	583	01	$555-85-8988$
109	STAT	696	01	$135-66-3641$
109	STAT	696	01	$145-76-4239$
109	STAT	696	01	$155-62-9418$
109	STAT	696	01	$167-52-5679$
109	STAT	696	01	$197-48-0279$
109	STAT	696	01	$230-25-4803$
109	STAT	696	01	$288-58-2883$
109	STAT	696	01	$298-72-3524$
109	STAT	696	01	$307-90-7774$

109	STAT	696	01	323-80-4274
109	STAT	696	01	334-60-9745
109	STAT	696	01	407-06-8356
109	STAT	696	01	410-43-5582
109	STAT	696	01	426-06-7661
109	STAT	696	01	441-76-2966
109	STAT	696	01	452-37-8068
109	STAT	696	01	452-93-3772
110	STAT	696	91	135-66-3641
110	STAT	696	91	145-76-4239
110	STAT	696	91	155-62-9418
110	STAT	696	91	167-52-5679
110	STAT	696	91	197-48-0279
110	STAT	696	91	230-25-4803
110	STAT	696	91	288-58-2383
110	STAT	696	91	298-72-3524
110	STAT	696	91	307-90-7774
110	STAT	696	91	323-80-4274
110	STAT	696	91	334-60-9745
110	STAT	696	91	407-06-8356
110	STAT	696	91	410-43-5582
110	STAT	696	91	426-06-7661
110	STAT	696	91	441-76-2966
110	STAT	696	91	452-37-8068
110	STAT	696	91	452-93-3772
111	STAT	696	02	493-64-0852
111	STAT	696	02	507-88-4212
111	STAT	696	02	508-76-1824
111	STAT	696	02	512-78-6647
111	STAT	696	02	521-33-4756
111	STAT	696	02	528-43-6241
111	STAT	696	02	537-92-9102
111	STAT	696	02	540-08-9450
111	STAT	696	02	541-13-1388
111	STAT	696	02	553-91-1466
111	STAT	696	02	594-28-2049
111	STAT	696	02	594-54-0505
111	STAT	696	02	999-00-0304
111	STAT	696	02	999-00-0305
111	STAT	696	02	999-00-0314
111	STAT	696	02	999-00-0315
112	STAT	696	92	468-84-9447
112	STAT	696	92	493-64-0852
112	STAT	696	92	507-88-4212
112	STAT	696	92	508-76-1824
112	STAT	696	92	512-78-6647
112	STAT	696	92	521-33-4756
112	STAT	696	92	528-43-6241
112	STAT	696	92	537-92-9102
112	STAT	696	92	540-08-9450
112	STAT	696	92	541-13-1388
112	STAT	696	92	553-91-1466

112	STAT	696	92	$594-28-2049$
112	STAT	696	92	$594-54-0505$
112	STAT	696	92	$999-00-0304$
112	STAT	696	92	$999-00-0305$
112	STAT	696	92	$999-00-0314$
112	STAT	696	92	$999-00-0315$
112	STAT	696	92	$468-84-9447$
201	CSCE	532	01	$413-02-6062$
201	CSCE	532	01	$543-17-5520$
201	CSCE	532	01	$999-00-0280$
201	CSCE	532	01	$999-00-0311$
201	CSCE	532	01	$999-00-0312$
202	CSCE	544	01	$002-78-1969$
202	CSCE	544	01	$005-74-7174$
202	CSCE	544	01	$093-54-0888$
202	CSCE	544	01	$183-64-2498$
202	CSCE	544	01	$211-58-1799$
202	CSCE	544	01	$252-27-3119$
202	CSCE	544	01	$269-70-2117$
202	CSCE	544	01	$296-60-5633$
202	CSCE	544	01	$310-76-0949$
202	CSCE	544	01	$311-82-3180$
202	CSCE	544	01	$334-72-1062$
202	CSCE	544	01	$381-74-5351$
202	CSCE	544	01	$392-78-2316$
202	CSCE	544	01	$413-02-6062$
202	CSCE	544	01	$414-17-2236$
202	CSCE	544	01	$467-17-0758$
202	CSCE	544	01	$473-86-0371$
202	CSCE	544	01	$480-86-8957$
202	CSCE	544	01	$516-13-9290$
202	CSCE	544	01	$520-17-9499$
202	CSCE	544	01	$527-96-9291$
202	CSCE	544	01	$528-43-9574$
202	CSCE	544	01	$539-64-0152$
202	CSCE	544	01	$555-85-8988$
202	CSCE	544	01	$559-53-3283$
202	CSCE	544	01	$574-60-5692$
202	CSCE	544	01	$598-09-4953$
202	CSCE	544	01	$600-48-5415$
202	CSCE	544	01	$999-00-0301$
202	CSCE	544	01	$999-00-0309$
202	CSCE	544	01	$999-00-0310$
202	CSCE	544	01	$999-00-0317$
202	CSCE	544	01	$999-00-0318$
203	CSCE	595	01	$005-74-7174$
203	CSCE	595	01	$183-64-2498$
203	CSCE	595	01	$269-70-2117$
203	CSCE	595	01	$352-66-0972$
203	CSCE	595	01	$413-02-6062$
203	CSCE	595	01	$414-17-2236$
	595	01	$467-17-0758$	
103				

203	CSCE	595	01	$480-86-8957$
203	CSCE	595	01	$529-43-6216$
203	CSCE	595	01	$999-00-0293$
203	CSCE	595	01	$999-00-0307$
203	CSCE	595	01	$999-00-0309$
204	CSCE	595	91	$005-74-7174$
204	CSCE	595	91	$183-64-2498$
204	CSCE	595	91	$269-70-2117$
204	CSCE	595	91	$352-66-0972$
204	CSCE	595	91	$413-02-6062$
204	CSCE	595	91	$414-17-2236$
204	CSCE	595	91	$467-17-0758$
204	CSCE	595	91	$480-86-8957$
204	CSCE	595	91	$529-43-6216$
204	CSCE	595	91	$999-00-0293$
204	CSCE	595	91	$999-00-0307$
204	CSCE	595	91	$999-00-0309$
205	CSCE	623	01	$005-74-7174$
205	CSCE	623	01	$013-52-7106$
205	CSCE	623	01	$183-64-2498$
206	CSCE	646	01	$005-74-7174$
206	CSCE	646	01	$013-52-7106$
206	CSCE	646	01	$211-58-1799$
206	CSCE	646	01	$296-60-5633$
206	CSCE	646	01	$381-74-5351$
206	CSCE	646	01	$414-17-2236$
206	CSCE	646	01	$473-86-0371$
206	CSCE	646	01	$574-60-5692$
206	CSCE	646	01	$999-00-0286$
206	CSCE	646	01	$999-00-0309$
206	CSCE	646	01	$999-00-0310$
206	CSCE	646	01	$999-00-0312$
207	CSCE	654	01	$093-54-0888$
207	CSCE	654	01	$252-27-3119$
207	CSCE	654	01	$296-60-5633$
207	CSCE	654	01	$311-82-3180$
207	CSCE	654	01	$334-72-1062$
207	CSCE	654	01	$370-70-6185$
207	CSCE	654	01	$389-66-4949$
207	CSCE	654	01	$392-78-2316$
207	CSCE	654	01	$467-17-0758$
207	CSCE	654	01	$473-86-0371$
207	CSCE	654	01	$480-86-8957$
207	CSCE	654	01	$520-17-9499$
207	CSCE	654	01	$527-96-9291$
207	CSCE	654	01	$528-43-9574$
207	CSCE	654	01	$555-85-8988$
207	CSCE	654	01	$559-53-3283$
207	CSCE	654	01	$999-00-0286$
207	CSCE	654	01	$999-00-0301$
207	CSCE	654	01	$999-00-0307$
207	CSCE	654	01	$999-00-0310$

207	CSCE	654	01	$999-00-0311$
207	CSCE	654	01	$999-00-0312$
207	CSCE	654	01	$999-00-0317$
207	CSCE	654	01	$999-00-0318$
207	CSCE	654	01	$999-00-0319$
208	CSCE	656	01	$252-27-3119$
208	CSCE	656	01	$453-13-1389$
208	CSCE	656	01	$548-85-3519$
209	CSCE	682	01	$310-76-0949$
209	CSCE	682	01	$510-84-9117$
209	CSCE	682	01	$526-75-7783$
209	CSCE	682	01	$600-48-5415$
210	CSCE	683	01	$310-76-0949$
210	CSCE	683	01	$453-13-1389$
210	CSCE	683	01	$543-17-5520$
211	CSCE	686	01	$013-52-7106$
211	CSCE	686	01	$211-58-1799$
211	CSCE	686	01	$296-60-5633$
211	CSCE	686	01	$310-76-0949$
211	CSCE	686	01	$352-66-0972$
211	CSCE	686	01	$543-17-5520$
211	CSCE	686	01	$548-85-3519$
211	CSCE	686	01	$594-54-0505$
211	CSCE	686	01	$999-00-0307$
212	CSCE	698	01	$005-74-7174$
212	CSCE	698	01	$013-52-7106$
212	CSCE	698	01	$183-64-2498$
212	CSCE	698	01	$211-58-1799$
212	CSCE	698	01	$252-27-3119$
212	CSCE	698	01	$269-70-2117$
212	CSCE	698	01	$296-60-5633$
212	CSCE	698	01	$310-76-0949$
212	CSCE	698	01	$312-94-1786$
212	CSCE	698	01	$334-72-1062$
212	CSCE	698	01	$352-66-0972$
212	CSCE	698	01	$381-74-5351$
212	CSCE	698	01	$413-02-6062$
212	CSCE	698	01	$414-17-2336$
212	CSCE	698	01	$453-13-1389$
212	CSCE	698	01	$467-17-0758$
212	CSCE	698	01	$473-86-0371$
212	CSCE	698	01	$480-86-8957$
212	CSCE	698	01	$527-96-9291$
212	CSCE	698	01	$529-43-6216$
212	CSCE	698	01	$539-64-0152$
212	CSCE	698	01	$543-17-5520$
212	CSCE	698	01	$548-85-3519$
212	CSCE	698	01	$555-85-8988$
212	CSCE	698	01	$559-53-3283$
212	CSCE	698	01	$574-60-5692$
CSCE	698	01	$600-48-5415$	
	698	01	$999-00-0280$	

212	CSCE	698	01	999-00-0286
212	CSCE	698	01	999-00-0307
212	CSCE	698	01	999-00-0309
212	CSCE	698	01	999-00-0310
212	CSCE	698	01	999-00-0311
212	CSCE	698	01	999-00-0312
212	CSCE	698	01	999-00-0317
212	CSCE	698	01	999-00-0318
213	CSCE	793	01	312-94-1786
213	CSCE	793	01	334-72-1062
213	CSCE	793	$\checkmark 01$	352-66-0972
213	CSCE	793	. 01	413-02-6062
213	CSCE	793	01	529-43-6216
213	CSCE	793	01	539-64-0152
213	CSCE	793	01	543-17-5520
213	CSCE	793	01	548-85-3519
213	CSCE	793	01	559-53-3283
213	CSCE	793	01	574-60-5692
213	CSCE	793	01	600-48-5415
213	CSCE	793	01	999-00-0311
213	CSCE	793	01	999-00-0312
214	CSCE	793	91	312-94-1786
214	CSCE	793	91	334-72-1062
214	CSCE	793	91	352-66-0972
214	CSCE	793	91	413-02-6062
214	CSCE	793	91	529-43-6216
214	CSCE	793	91	539-64-0152
214	CSCE	793	91	543-17-5520
214	CSCE	793	91	548-85-3519
214	CSCE	793	91	559-53-3283
214	CSCE	793	91	574-60-5692
214	CSCE	793	91	600-48-5415
214	CSCE	793	91	999-00-0311
214	CSCE	793	91	999-00-0312
215	EENG	533	01	066-66-0823
215	EENG	533	01	077-68-9156
215	EENG	533	01	093-54-0888
215	EENG	533	01	152-76-8630
215	EENG	533	01	211-60-1839
215	EENG	533	01	311-82-3180
215	EENG	. 533	01	326-64-5200
215	EENG	533	01	336-52-9834
215	EENG	533	01	370-70-6185
215	EENG	533	01	389-66-4949
215	EENG	533	01	392-78-2316
215	EENG	533	01	429-45-3616
215	EENG	533	01	505-15-1953
215	EENG	533	01	516-13-9290
215	EENG	533	01	525-45-1222
215	EENG	533	01	528-43-9574
215	EENG	533	01	558-43-9859
215	EENG	533	01	589-07-9792

215	EENG	533	01	999-00-0316
215	EENG	533	01	999-00-0320
216	EENG	533	91	066-66-0823
216	EENG	533	91	077-68-9156
216	EENG	533	91	093-54-0888
216	EENG	533	91	152-76-8630
216	EENG	533	91	211-60-1839
216	EENG	533	91	311-82-3180
216	EENG.	533	91	326-64-5200
216	EENG	533	' 91	336-52-9834
216	EENG	533	91	370-70-6185
216	EENG	533	91	389-66-4949
216	EENG	533	91	392-78-2316
216	EENG	533	91	429-45-3616
216	EENG	533	91	505-15-1953
216	EENG	533	91	516-13-9290
216	EENG	533	91	525-45-1222
216	EENG	533	91	528-43-9574
216	EENG	533	91	558-43-9859
216	EENG	533	91	589-07-9792
216	EENG	533	91	999-00-0316
216	EENG	533	91	999-00-0320
217	EENG	621	01	002-78-1969
217	EENG	621	01	183-64-2498
217	EENG	621	01	336-52-9834
217	EENG	621	01	429-45-3616
217	EENG	621	01	516-13-9290
217	EENG	621	01	598-09-4953
218	EENG	625	01	077-68-9156
218	EENG	625	01	249-17-8435
218	EENG	625	01	301-80-8703
218	EENG	625	01	339-80-9364
218	EENG	625	01	367-92-6632
218	EENG	625	01	370-70-6185
218	EENG	625	01	389-66-4949
218	EENG	625	01	520-17-9499
218	EENG	625	01	546-45-5750
218	EENG	625	01	598-09-4953
219	EENG	629	01	301-80-8703
219	EENG	629	01	520-17-9499
219	EENG	629	01	999-00-0319
220	EENG	630	01	249-17-8435
220	EENG	630	01	301-80-8703
220	EENG	630	01	339-80-9364
220	EENG	630	01	367-92-6632
220	EENG	630	01	516-13-9290
220	EENG	630	01	521-33-7529
220	EENG	630	01	546-45-5750
220	EENG	630	01	567-75-3710
221	EENG	635	01	152-76-8630
221	EENG	635	01	558-43-9859
221	EENG	635	01	589-07-9792

222	EENG	640	01	$066-66-0823$
222	EENG	640	01	$211-60-1839$
222	EENG	640	01	$505-15-1953$
222	EENG	640	01	$582-97-1702$
222	EENG	640	01	$999-00-0285$
223	EENG	670	01	$002-78-1969$
223	EENG	670	01	$077-68-9156$
223	EENG	670	01	$093-54-0888$
223	EENG	670	01	$311-82-3180$
223	EENG	670	01	$336-52-9834$
223	EENG	670	01	$370-70-6185$
223	EENG	670	01	$389-66-4949$
223	EENG	670	01	$392-78-2316$
223	EENG	670	01	$429-45-3616$
223	EENG	670	01	$504-06-2516$
223	EENG	670	01	$516-13-9290$
223	EENG	670	01	$528-43-9574$
223	EENG	670	01	$567-75-3710$
223	EENG	670	01	$598-09-4953$
223	EENG	670	01	$999-00-0301$
223	EENG	670	01	$999-00-0319$
224	EENG	695	01	$408-55-1091$
224	EENG	695	01	$445-68-9745$
225	EENG	695	91	$408-55-1091$
225	EENG	695	91	$445-68-9745$
226	EENG	698	01	$002-78-1969$
226	EENG	698	01	$066-66-0823$
226	EENG	698	01	$077-68-9156$
226	EENG	698	01	$093-54-0888$
226	EENG	698	01	$152-76-8630$
226	EENG	698	01	$211-60-1839$
226	EENG	698	01	$249-17-8435$
226	EENG	698	01	$301-80-8703$
226	EENG	698	01	$311-82-3180$
226	EENG	698	01	$336-52-9834$
226	EENG	698	01	$339-80-9364$
226	EENG	698	01	$367-92-6632$
226	EENG	698	01	$370-70-6185$
226	EENG	698	01	$389-66-4949$
226	EENG	698	01	$392-78-2316$
226	EENG	698	01	$408-55-1091$
226	EENG	698	01	$429-45-3616$
226	EENG	698	01	$445-68-9745$
226	EENG	698	01	$505-15-1953$
226	EENG	698	01	$516-13-9290$
226	EENG	698	01	$520-17-9499$
226	EENG	698	01	$521-33-7529$
226	EENG	698	01	$528-43-9574$
226	EENG	698	01	$546-45-5750$
226	EENG	698	01	$558-43-9859$
226	EENG	698	01	$567-75-3710$
226	EENG	698	01	$589-07-9792$

226	EENG	698	01	$598-09-4953$
226	EENG	698	01	$999-0-0301$
226	EENG	698	01	$999-00-0319$
227	EENG	700	01	$336-52-9834$
227	EENG	700	01	$339-80-9364$
227	EENG	700	01	$367-92-6632$
227	EENG	700	01	$521-33-7529$
227	EENG	700	01	$546-45-5750$
227	EENG.	700	01	$999-00-0319$
228	EENG	708	01	$066-66-0823$
228	EENG	708	01	$211-60-1839$
228	EENG	708	01	$505-15-1953$
228	EENG	708	01	$582-97-1702$
229	EENG	766	01	$152-76-8630$
229	EENG	766	01	$211-60-1839$
229	EENG	766	01	$505-15-1953$
229	EENG	766	01	$558-43-9859$
229	EENG	766	01	$582-97-1702$
229	EENG	766	01	$589-07-9792$
229	EENG	766	01	$999-00-0285$
301	CHEM	585	01	$116-68-7877$
301	CHEM	585	01	$251-49-4794$
301	CHEM	585	01	$267-81-4973$
301	CHEM	585	01	$392-86-9912$
301	CHEM	585	01	$398-86-5509$
301	CHEM	585	01	$401-11-9897$
301	CHEM	585	01	$474-86-8746$
301	CHEM	585	01	$516-96-8455$
301	CHEM	585	01	$539-98-4428$
302	CHEM	675	01	$061-58-6522$
302	CHEM	675	01	$116-56-4832$
302	CHEM	675	01	$226-27-8496$
302	CHEM	675	01	$526-13-8757$
303	EVSC	560	01	$116-68-7877$
303	EVSC	560	01	$251-49-4794$
303	EVSC	560	01	$267-81-4973$
303	EVSC	560	01	$398-86-5509$
303	EVSC	560	01	$474-86-8746$
303	EVSC	560	01	$516-96-8455$
303	EVSC	560	01	$539-98-4428$
304	EVSC	670	01	$005-82-0235$
304	EVSC	670	01	$008-48-619$
304	EVSC	670	01	$229-23-2317$
304	EVSC	670	01	$372-04-3899$
304	EVSC	670	01	$401-11-9897$
304	EVSC	670	01	$488-86-7408$
304	EVSC	670	01	$527-25-1736$
304	EVSC	670	01	$554-19-9797$
304	EVSC	670	01	$572-15-7130$
305	METG	630	01	$017-62-8627$
305	METG	630	01	$023-52-7817$
305	METG	630	01	$261-73-9432$

305	METG	630	01	$263-63-8302$
305	METG	630	01	$399-68-3166$
305	METG	630	01	$414-49-4391$
305	METG	630	01	$459-79-1577$
305	METG	630	01	$460-33-1803$
305	METG	630	01	$480-60-4053$
305	METG	630	01	$504-78-8469$
305	METG	630	01	$510-84-9117$
305	METG.	630	01	$526-75-7783$
306	METG	630	91	$017-62-8627$
306	METG	630	91	$023-52-7817$
306	METG	630	91	$261-73-9432$
306	METG	630	91	$263-63-8302$
306	METG	630	91	$399-68-3166$
306	METG	630	91	$414-49-4391$
306	METG	630	91	$459-79-1577$
306	METG	630	91	$460-33-1803$
306	METG	630	91	$480-60-4053$
306	METG	630	91	$504-78-8469$
306	METG	630	91	$510-84-9117$
306	METG	630	91	$526-75-7783$
307	METG	642	01	$017-62-8627$
307	METG	642	01	$023-52-7817$
307	METG	642	01	$261-73-9332$
307	METG	642	01	$263-63-302$
307	METG	642	01	$399-68-3166$
307	METG	642	01	$414-49-4391$
307	METG	642	01	$459-79-1577$
307	METG	642	01	$460-33-1803$
307	METG	642	01	$480-60-4053$
307	METG	642	01	$504-78-8469$
307	METG	642	01	$510-84-9117$
308	METG	798	01	$017-62-8627$
308	METG	798	01	$023-52-7817$
308	METG	798	01	$261-73-9432$
308	METG	798	01	$263-63-8302$
308	METG	798	01	$399-68-3166$
308	METG	798	01	$414-49-4391$
308	METG	798	01	$459-79-1577$
308	METG	798	01	$460-33-1803$
308	METG	798	01	$480-60-4053$
308	METG	798	01	$504-78-8469$
308	METG	798	01	$510-84-9117$
308	METG	798	01	$526-75-7783$
309	NENG	560	01	$005-82-0235$
309	NENG	560	01	$008-48-6719$
309	NENG	560	01	$229-23-2317$
309	NENG	560	01	$372-04-2899$
309	NENG	560	01	$445-68-9745$
309	NENG	560	01	$488-86-7408$
309	NENG	560	01	$527-25-1736$
309	NENG	560	01	$554-19-9797$

309	NENG	560	01	$572-15-7130$
310	NENG	631	01	$005-82-0235$
310	NENG	631	01	$008-48-6719$
310	NENG	631	01	$229-23-2317$
310	NENG	631	01	$372-04-2899$
310	NENG	631	01	$488-86-7408$
310	NENG	631	01	$527-25-1736$
310	NENG	631	01	$554-19-9797$
310	NENG	631	01	$572-15-7130$
311	OENG	620	01	$026-52-5136$
311	OENG	620	01	$141-64-0398$
311	OENG	620	01	$196-68-0831$
311	OENG	620	01	$436-19-7283$
311	OENG	620	01	$504-06-2516$
311	OENG	620	01	$530-74-6962$
311	OENG	620	01	$573-97-3421$
311	OENG	620	01	$594-32-7819$
312	OENG	650	01	$026-52-5136$
312	OENG	650	01	$141-64-0398$
312	OENG	650	01	$196-68-0831$
312	OENG	650	01	$249-17-8435$
312	OENG	650	01	$301-80-8703$
312	OENG	650	01	$367-92-6632$
312	OENG	650	01	$436-19-7283$
312	OENG	650	01	$504-60-2516$
312	OENG	650	01	$521-33-7529$
312	OENG	650	01	$530-74-6962$
312	OENG	650	01	$546-45-5750$
312	OENG	650	01	$573-97-3421$
312	OENG	650	01	$594-32-7819$
313	PHYS	519	01	$017-62-8627$
313	PHYS	519	01	$023-52-7817$
313	PHYS	519	01	$261-73-9432$
313	PHYS	519	01	$263-63-8302$
313	PHYS	519	01	$399-68-3166$
313	PHYS	519	01	$414-49-4391$
313	PHYS	519	01	$459-79-1577$
313	PHYS	519	01	$460-33-1803$
313	PHYS	519	01	$480-60-4053$
313	PHYS	519	01	$504-88-8469$
313	PHYS	519	01	$510-84-9117$
313	PHYS	519	01	$526-75-7783$
313	PHYS	519	01	$550-29-9749$
314	PHYS	542	01	$026-52-5136$
314	PHYS	542	01	$141-64-0398$
314	PHYS	542	01	$196-68-0831$
314	PHYS	542	01	$436-19-7283$
314	PHYS	542	01	$504-06-2516$
314	PHYS	542	01	$530-74-6962$
314	PHYS	542	01	$573-97-3421$
314	PHYS	542	01	$594-32-7819$
315	PHYS	542	91	$026-52-5136$

315	PHYS	542	91	141-64-0398
315	PHYS	542	91	196-68-0831
315	PHYS	542	91	436-19-7283
315	PHYS	542	91	504-06-2516
315	PHYS	542	91	530-74-6962
315	PHYS	542	91	573-97-3421
315	PHYS	542	91	594-32-7819
; 316	PHYS	650	01	026-52-5136
316	PHYS.	650	01	061-58-6522
316	PHYS	650	01	116-56-4832
316	PHYS	650	01	141-64-0398
316	PHYS	650	01	196-68-0831
316	PHYS	650	01	226-27-8496
316	PHYS	650	01	436-19-7283
316	PHYS	650	01	526-13-8757
316	PHYS	650	01	530-74-6962
316	PHYS	650	01	573-97-3421
316	PHYS	650	01	594-32-7819
317	PHYS	798	01	005-82-0235
317	PHYS	798	01	008-48-6719
317	PHYS	798	01	026-52-5136
317	PHYS	798	01	061-58-6522
317	PHYS	798	01	116-56-4832
317	PHYS	798	01	141-64-0398
317	PHYS	798	01	196-68-0831
317	PHYS	798	01	224-35-5121
317	PHYS	798	01	226-27-8496
317	PHYS	798	01	229-23-2317
317	PHYS	798	01	272-76-3876
317	PHYS	798	01	307-88-1041
317	PHYS	798	01	368-96-5334
317	PHYS	798	01	372-04-2899
317	PHYS	-798	01	436-19-7283
317	PHYS	798	01	481-88-7469
317	PHYS	798	01	488-86-7408
317	PHYS	798	01	504-06-2516
317	PHYS	798	01	526-13-8757
317	PHYS	798	01	527-25-1736
317	PHYS	798	01	530-74-6962
317	PHYS	798	01	544-92-0760
317	PHYS	798	01	554-19-9797
317	PHYS	798	01	571-43-1820
317	PHYS	798	01	572-15-7130
317	PHYS	798	01	573-97-3421
317	PHYS	798	01	594-32-7819
401	OPER	403	01	135-66-3641
401	OPER	403	01	145-76-4239
401	OPER	403	01	155-62-9418
401	OPER	403	01	167-52-5679
401	OPER	403	01	197-48-0279
401	OPER	403	01	230-25-4803
401	OPER	403	01	298-72-3524

401	OPER	403	01	$307-90-7774$
401	OPER	403	01	$334-60-9745$
401	OPER	403	01	$407-06-8356$
401	OPER	403	01	$410-43-5582$
401	OPER	403	01	$426-06-7661$
401	OPER	403	01	$441-76-2966$
401	OPER	403	01	$452-37-8068$
401	OPER	403	01	$452-93-3772$
401	OPER	403	01	$468-84-9447$
401	OPER	403	01	$493-64-0852$
401	OPER	403	01	$507-88-4212$
401	OPER	403	01	$508-76-1824$
401	OPER	403	01	$512-78-6647$
401	OPER	403	01	$521-33-4756$
401	OPER	403	01	$528-43-6241$
401	OPER	403	01	$537-92-9102$
401	OPER	403	01	$540-08-9450$
401	OPER	403	01	$541-13-1388$
401	OPER	403	01	$553-91-1466$
401	OPER	403	01	$594-28-2049$
401	OPER	403	01	$594-54-0505$
401	OPER	403	01	$999-00-0304$
401	OPER	403	01	$999-00-0305$
401	OPER	403	01	$999-00-0314$
401	OPER	403	01	$999-00-0315$
402	OPER	561	01	$135-66-3641$
402	OPER	561	01	$145-76-4239$
402	OPER	561	01	$155-62-9418$
402	OPER	561	01	$167-52-5679$
402	OPER	561	01	$175-52-4913$
402	OPER	561	01	$197-48-0279$
402	OPER	561	01	$230-25-4803$
402	OPER	561	01	$298-72-3524$
402	OPER	561	01	$307-90-7774$
402	OPER	561	01	$323-80-4274$
402	OPER	561	01	$334-60-9745$
402	OPER	561	01	$407-06-8356$
402	OPER	561	01	$410-43-5582$
403	OPER	561	02	$426-06-7661$
403	OPER	561	02	$441-76-2966$
403	OPER	561	02	$452-37-8068$
403	OPER	561	02	$452-93-3772$
403	OPER	561	02	$468-84-9447$
403	OPER	561	02	$493-64-0852$
403	OPER	561	02	$507-88-4212$
403	OPER	561	02	$508-76-1824$
403	OPER	561	02	$512-78-6647$
403	OPER	561	02	$512-86-0931$
403	OPER	561	02	$521-33-4756$
403	OPER	561	02	$528-43-6241$
404	OPER	561	03	$537-92-9102$
404	OPER	561	03	$540-08-9450$

404	OPER	561	03	541-13-1388
404	OPER	561	03	553-91-1466
404	OPER	561	03	594-28-2049
404	OPER	561	03	594-54-0505
404	OPER	561	03	999-00-0304
404	OPER	561	03	999-00-0305
404	OPER	561	03	999-00-0314
404	OPER	561	03	999-00-0315
405	OPER.	601	01	140-72-2212
405	OPER	601	01	146-52-4613
405	OPER	601	- 01	198-44-5901
405	OPER	601	01	289-46-5275
405	OPER	601	01	325-52-2221
405	OPER	601	01	350-54-0036
405	OPER	601	01	557-37-7803
406	OPER	610	01	135-66-3641
406	OPER	610	01	145-76-4239
406	OPER	610	01	155-62-9418
406	OPER	610	01	167-52-5679
406	OPER	610	01	197-48-0279
406	OPER	610	01	230-25-4803
406	OPER	610	01	298-72-3524
406	OPER	610	01	307-90-7774
406	OPER	610	01	334-60-9745
406	OPER	610	01	407-06-8356
406	OPER	610	01	410-43-5582
407	OPER	610	02	426-06-7661
407	OPER	610	02	441-76-2966
407	OPER	610	02	452-37-8068
407	OPER	610	02	452-93-3772
407	OPER	610	02	468-84-9447
407	OPER	610	02	493-64-0852
407	OPER	610	02	507-88-4212
407	OPER	610	02	508-76-1824
407	OPER	610	02	512-78-6647
407	OPER	610	02	521-33-4756
407	OPER	610	02	528-43-6241
408	OPER	610	03	537-92-9102
408	OPER	610	03	540-08-9450
408	OPER	610	03	541-13-1388
408	OPER	610	03	553-91-1466
408	OPER	610	03	594-28-2049
408	OPER	610	03	594-54-0505
408	OPER	610	03	999-00-0304
408	OPER	610	03	999-00-0305
408	OPER	610	03	999-00-0314
408	OPER	610	03	999-00-0315
409	OPER	645	01	034-60-2463
409	OPER	645	01	136-58-7235
409	OPER	645	01	186-56-4516
409	OPER	645	01	249-08-3472
409	OPER	645	01	274-72-3552

409	OPER	645	01	280-84-6377
409	OPER	645	01	282-76-4447
409	OPER	645	01	290-72-0482
409	OPER	645	01	307-90-7774
409	OPER	645	01	374-94-8176
409	OPER	645	01	398-86-5509
409	OPER	645	01	450-33-9846
409	OPER	645	01	515-66-9344
409	OPER.	645	01	525-45-1222
409	OPER	645	01	528-43-6241
409	OPER	645	01	529-65-6705
409	OPER	645	01	531-04-5076
409	OPER	645	01	540-72-0433
501	EMGT	571	01	034-60-2463
501	EMGT	571	01	116-68-7877
501	EMGT	571	01	136-58-7235
501	EMGT	571	01	251-39-9136
501	EMGT	571	01	251-49-4794
501	EMGT	571	01	267-81-4973
501	EMGT	571	01	274-72-3552
501	EMGT	571	01	374-94-8176
501	EMGT	571	01	392-86-9912
501	EMGT	. 571	01	398-86-5509
501	EMGT	571	01	450-33-9846
501	EMGT	571	01	474-86-8746
501	EMGT	571	01	512-86-0931
501	EMGT	571	01	516-96-8455
501	EMGT	571	01	539-98-4428
501	EMGT	571	01	600-12-7720
502	ENVR	503	01	034-60-2463
502	ENVR	503	01	116-68-7877
502	ENVR	503	01	136-58-7235
502	ENVR	503	01	251-39-9136
502	ENVR	503	01	251-49-4794
502	ENVR	503	01	267-81-4973
502	ENVR	503	01	274-72-3552
502	ENVR	503	01	374-94-8176
502	ENVR	503	01	392-86-9912
502	ENVR	503	01	398-86-5509
502	ENVR	503	01	450-33-9846
502	ENVR	503	01	474-86-8746
502	ENVR	503	01	512-86-0931
502	ENVR	503	01	516-96-8455
502	ENVR	503	01	539-98-4428
502	ENVR	503	01	600-12-7720
503	ENVR	535	01	116-68-7877
503	ENVR	535	01	251-39-9136
503	ENVR	535	01	251-49-4794
503	ENVR	535	01	267-81-4973
503	ENVR	535	01	539-98-4428
503	ENVR	535	01	600-12-7720
504	ENVR	621	01	000-00-000

505	ENVR	623	01	$251-39-9136$
601	MECH	533	01	$249-08-3472$
601	MECH	533	01	$280-84-6377$
601	MECH	533	01	$281-66-8916$
601	MECH	533	01	$290-72-0482$
601	MECH	533	01	$368-02-1768$
601	MECH	533	01	$515-66-9344$
601	MECH	533	01	$525-45-1222$
601	MECH	533	01	$534-04-2575$
601	MECH	533	01	$540-72-0433$
602	MECH	605	01	$295-70-3221$
602	MECH	605	01	$326-64-5200$
602	MECH	605	01	$417-19-0228$
602	MECH	605	01	$437-63-1190$
603	MECH	620	01	$175-52-4913$
603	MECH	620	01	$323-80-4274$
604	MECH	628	01	$086-56-5916$
604	MECH	628	01	$175-52-4913$
604	MECH	628	01	$278-88-7980$
604	MECH	628	01	$326-64-5200$
604	MECH	628	01	$550-29-9749$
605	MECH	636	01	$249-08-3472$
605	MECH	636	01	$281-66-8916$
605	MECH	636	01	$290-72-0482$
605	MECH	636	01	$368-02-1768$
605	MECH	636	01	$534-04-2575$
605	MECH	636	01	$540-72-0433$
606	MECH	642	01	$249-08-3472$
606	MECH	642	01	$285-60-3689$
606	MECH	642	01	$295-70-3221$
606	MECH	642	01	$417-19-0228$
606	MECH	642	01	$437-63-1190$
606	MECH	642	01	$534-04-2575$
607	MECH	723	01	$086-56-5916$
607	MECH	723	01	$368-02-1768$
608	MENG	531	01	$186-56-4516$
608	MENG	531	01	$249-08-3472$
608	MENG	531	01	$280-84-6377$
608	MENG	531	01	$281-66-8916$
608	MENG	531	01	$282-76-4447$
608	MENG	531	01	$290-72-0482$
608	MENG	531	01	$368-02-1768$
608	MENG	531	01	$417-19-0228$
608	MENG	531	01	$437-63-1190$
608	MENG	531	01	$515-66-9344$
608	MENG	531	01	$522-29-7818$
608	MENG	531	01	$525-45-1222$
608	MENG	531	01	$529-65-6705$
608	MENG	531	01	$531-04-5076$
608	MENG	531	01	$540-72-0433$
608	MENG	531	01	$999-00-0316$
608	MENG	531	01	$999-00-0320$

609	MENG	732	01	$278-88-7980$
609	MENG	732	01	$295-70-3221$
609	MENG	732	01	$437-63-1190$
609	MENG	732	01	$522-29-7818$
610	SENG	535	01	$186-56-4516$
610	SENG	535	01	$249-08-3472$
610	SENG	535	01	$280-84-6377$
610	SENG	535	01	$282-76-4447$
610	SENG	535	01	$290-72-0482$
610	SENG	535	01	$515-66-9344$
610	SENG	535	01	$525-45-1222$
610	SENG	535	01	$529-65-6705$
610	SENG	535	01	$531-04-5076$
610	SENG	535	01	$540-72-0433$
611	SENG	665	01	$086-56-5916$
611	SENG	665	01	$326-64-5200$
611	SENG	665	01	$534-04-2575$

BIBLIOGRAPHY

Alvarez-Valdez, G., Martin G. \& Tamarit, J.M. "Constructing Good Solutions for the Spanish School Timetabling Problem." Journal of the Operational Research Society, 1996, 47, 1203-1215.

Bloomfield, S.D., \& McSharry, M.M. "Preferntial Course Scheduling." INTERFACES, 1979, 9(4), 24-31.

Costa, Daniel. "A Tabu Search Algorithm for Computing an Operational Timetable." European Journal of Operational Research, 1994, 76, 98-110.

Clemens, Robert T. Making Hard Decisions. Belmont: Duxbury, 1996.
Ferland, J.A. \& Fleurent, C. "SAPHIR: A Decision Support System for Course Scheduling." INTERFACES, 1994, 24, 105-115.

Graves, R.L., Linus, S., \& Sankaran, J. "An Auction Method for Course Registration." INTERFACES, 1993, 23, 81-92.

Keeney, Ralph L. Value-Focused Thinking. London: Harvard University Press, 1992.
Kirkwood, Craig W, Strategic Decision Making. Belmont: Duxbury, 1997.
Mulvey, John M. "A classroom/time assignment model." European Journal of Operations Research, 1982, 9, 64-70.

Patterson, J.H. \& Albracht, J.J. "Assembly-Line Balancing: Zero-One Programming with Fibonacci Search." Operations Research, 1975, 5(3), 166-172.

Sampson, S.E., Freeland, J.R., \& Weiss, E.N. "Class Scheduling to Maximize Participant Satisfaction." INTERFACES, 1995, 25, 30-41.

Sampson, S.E., \& Weiss, E.N. "Increasing Levels in Conference and Educational Scheduling: A Heuristic Approach." Management Science, 1995, 41(11), 1816-1825.

VITA

1Lt Shane Knighton was born on in to Steve and Sue Knighton. He graduated from Capital High School in June of 1990. Lt Knighton was appointed to the United States Air Force Academy and entered USAFA June 28, 1990 as a member of the Class of 1994. He graduated from first squadron, Mighty Mach One, of USAFA on 1 June 1994. Lt Knighton graduated with a Bachelor of Science Degree in Aeronautical Engineering.

Lt Knighton's first assignment was to the San Antonio Air Logistics Center at Kelly AFB, Texas. He was a structural engineer in support of depot operations for the Lockheed C-5 Galaxy. In August 1996, he entered the Graduate Operations Research program in the School of Engineering at the Air Force Institute of Technology, at WrightPatterson AFB, Ohio. Upon completion of the AFIT masters degree, he begins an assignment at AFOTEC, Kirtland AFB, New Mexico.

Lt Knighton is married to Michelle Knighton and they have a cocker spaniel named Brandi.

Permanent Address:

[^0]: If DialogSheets("dlgInstr3").Show = True Then
 DialogSheets("dlgInstr4").Show End If
 End If
 End If
 End Sub

[^1]: *** An optimal integer solution has been found ***

[^2]: *** Application terminated ***

[^3]: *** An optimal integer solution has been found ***

[^4]: *** Application terminated ***

