54 research outputs found
A combined western and bead-based multiplex platform to characterize extracellular vesicles
In regenerative medicine, extracellular vesicles (EVs) are considered as a promising cell-free approach. EVs are lipid bilayer-enclosed vesicles secreted by cells and are key players in intercellular communication. EV-based therapeutic approaches have unique advantages over the use of cell-based therapies, such as a high biological, but low immunogenic and tumorigenic potential. To analyze the purity and biochemical composition of EV preparations, the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins coisolated/recovered with EVs. Traditional methods for EV characterization, such as Western blotting, require a relatively high EV sample/protein input for the analysis of one protein. We here evaluate a combined Western and bead-based multiplex platform, called DigiWest, for its ability to detect simultaneously multiple EV markers in an EV-containing sample with inherent low protein input. DigiWest analysis was performed on EVs from various sources and species, including mesenchymal stromal cells, notochordal cells, and milk, from human, pig, and dog. The study established a panel of nine antibodies that can be used as cross-species for the detection of general EV markers and coisolates in accordance with the ISEV guidelines. This optimized panel facilitates the parallel evaluation of EV-containing samples, allowing for a comprehensive characterization and assessment of their purity. The total protein input for marker analysis with DigiWest was 1 μg for all nine antibodies, compared with ∼10 μg protein input required for traditional Western blotting for one antibody. These findings demonstrate the potential of the DigiWest technique for characterizing various types of EVs in the regenerative medicine field
A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology
As kidney diseases affect ∼10% of the world population, understanding the underlying mechanisms and developing therapeutic interventions are of high importance. Although animal models have enhanced knowledge of disease mechanisms, human (patho-)physiology may not be adequately represented in animals. Developments in microfluidics and renal cell biology have enabled the development of dynamic models to study renal (patho-)physiology in vitro. Allowing inclusion of human cells and combining different organ models, such as kidney-on-a-chip (KoC) models, enable the refinement and reduction of animal experiments. We systematically reviewed the methodological quality, applicability and effectiveness of kidney-based (multi-)organ-on-a-chip models, and describe the state-of-the-art, strengths and limitations, and opportunities regarding basic research and implementation of these models. We conclude that KoC models have evolved to complex models capable of mimicking systemic (patho-)physiological processes. Commercial chips and human induced pluripotent stem cells and organoids are important for KoC models to study disease mechanisms and assess drug effects, even in a personalized manner. This contributes to the Reduction, Refinement and Replacement of animal models for kidney research. A lack of reporting of intra- and inter-laboratory reproducibility and translational capacity currently hampers implementation of these models
A systematic review and meta-analysis of COVID-19 in kidney transplant recipients:Lessons to be learned
Kidney transplant recipients (KTR) may be at increased risk of adverse COVID-19 outcomes, due to prevalent comorbidities and immunosuppressed status. Given the global differences in COVID-19 policies and treatments, a robust assessment of all evidence is necessary to evaluate the clinical course of COVID-19 in KTR. Studies on mortality and acute kidney injury (AKI) in KTR in the World Health Organization COVID-19 database were systematically reviewed. We selected studies published between March 2020 and January 18th 2021, including at least five KTR with COVID-19. Random-effects meta-analyses were performed to calculate overall proportions, including 95% confidence intervals (95% CI). Subgroup analyses were performed on time of submission, geographical region, sex, age, time after transplantation, comorbidities, and treatments. We included 74 studies with 5559 KTR with COVID-19 (64.0% males, mean age 58.2 years, mean 73 months after transplantation) in total. The risk of mortality, 23% (95% CI: 21%-27%), and AKI, 50% (95% CI: 44%-56%), is high among KTR with COVID-19, regardless of sex, age and comorbidities, underlining the call to accelerate vaccination programs for KTR. Given the suboptimal reporting across the identified studies, we urge researchers to consistently report anthropometrics, kidney function at baseline and discharge, (changes in) immunosuppressive therapy, AKI, and renal outcome among KTR
Proteomic analysis of machine perfusion solution from brain dead donor kidneys reveals that elevated complement, cytoskeleton and lipid metabolism proteins are associated with 1-year outcome
Assessment of donor kidney quality is based on clinical scores or requires biopsies for histological assessment. Noninvasive strategies to identify and predict graft outcome at an early stage are, therefore, needed. We evaluated the perfusate of donation after brain death (DBD) kidneys during nonoxygenated hypothermic machine perfusion (HMP). In particular, we compared perfusate protein profiles of good outcome (GO) and suboptimal outcome (SO) 1-year post-transplantation. Samples taken 15 min after the start HMP (T1) and before the termination of HMP (T2) were analysed using quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). Hierarchical clustering of the 100 most abundant proteins showed discrimination between grafts with a GO and SO at T1. Elevated levels of proteins involved in classical complement cascades at both T1 and T2 and a reduced abundance of lipid metabolism at T1 and of cytoskeletal proteins at T2 in GO versus SO was observed. ATP-citrate synthase and fatty acid-binding protein 5 (T1) and immunoglobulin heavy variable 2-26 and desmoplakin (T2) showed 91% and 86% predictive values, respectively, for transplant outcome. Taken together, DBD kidney HMP perfusate profiles can distinguish between outcome 1-year post-transplantation. Furthermore, it provides insights into mechanisms that could play a role in post-transplant outcomes.</p
Screen-based identification and validation of four new ion channels as regulators of renal ciliogenesis
©2015. To investigate the contribution of ion channels to ciliogenesis, we carried out a small interfering RNA (siRNA)-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4. We show that these four ion channels localize to renal tubules, specifically to the base of primary cilia. We report that human KCNQ1 Long QT syndrome disease alleles regulate renal ciliogenesis; KCNQ1-p. R518X, -p.A178T and -p.K362R could not rescue ciliogenesis after Kcnq1-siRNA-mediated depletion in contrast to wild-type KCNQ1 and benign KCNQ1-p.R518Q, suggesting that the ion channel function of KCNQ1 regulates ciliogenesis. In contrast, we demonstrate that the ion channel function ofKCNJ10 is independent of its effect on ciliogenesis. Our data suggest that these four ion channels regulate renal ciliogenesis through the periciliary diffusion barrier or the ciliary pocket, with potential implication as genetic contributors to ciliopathy pathophysiology. The new functional roles of a subset of ion channels provide new insights into the disease pathogenesis of channelopathies, which might suggest future therapeutic approaches
A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles
Mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) show therapeutic potential in multiple disease models, including kidney injury. Clinical translation of sEVs requires further preclinical and regulatory developments, including elucidation of the biodistribution and mode of action (MoA). Biodistribution can be determined using labelled sEVs in animal models which come with ethical concerns, are time-consuming and expensive, and may not well represent human physiology. We hypothesised that, based on developments in microfluidics and human organoid technology, in vitro multi-organ-on-a-chip (MOC) models allow us to study effects of sEVs in modelled human organs like kidney and liver in a semi-systemic manner. Human kidney- and liver organoids combined by microfluidic channels maintained physiological functions, and a kidney injury model was established using hydrogenperoxide. MSC-sEVs were isolated, and their size, density and potential contamination were analysed. These sEVs stimulated recovery of the renal epithelium after injury. Microscopic analysis shows increased accumulation of PKH67-labelled sEVs not only in injured kidney cells, but also in the unharmed liver organoids, compared to healthy control conditions. In conclusion, this new MOC model recapitulates therapeutic efficacy and biodistribution of MSC-sEVs as observed in animal models. Its human background allows for in-depth analysis of the MoA and identification of potential side effects
Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addresse
Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation
Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field
- …