1,921 research outputs found
A Model for Patchy Reconnection in Three Dimensions
We show, theoretically and via MHD simulations, how a short burst of
reconnection localized in three dimensions on a one-dimensional current sheet
creates a pair of reconnected flux tubes. We focus on the post-reconnection
evolution of these flux tubes, studying their velocities and shapes. We find
that slow-mode shocks propagate along these reconnected flux tubes, releasing
magnetic energy as in steady-state Petschek reconnection. The geometry of these
three-dimensional shocks, however, differs dramatically from the classical
two-dimensional geometry. They propagate along the flux tube legs in four
isolated fronts, whereas in the two-dimensional Petschek model, they form a
continuous, stationary pair of V-shaped fronts.
We find that the cross sections of these reconnected flux tubes appear as
teardrop shaped bundles of flux propagating away from the reconnection site.
Based on this, we argue that the descending coronal voids seen by Yohkoh SXT,
LASCO, and TRACE are reconnected flux tubes descending from a flare site in the
high corona, for example after a coronal mass ejection. In this model, these
flux tubes would then settle into equilibrium in the low corona, forming an
arcade of post-flare coronal loops.Comment: 27 pages plus 16 figure
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar
flares, plasmoid-induced-reconnection and fractal reconnection are proposed and
examined. We first briefly summarize recent solar observations that give us
hints on the role of plasmoid (flux rope) ejections in flare energy release. We
then discuss the plasmoid-induced-reconnection model, which is an extention of
the classical two-ribbon-flare model which we refer to as the CSHKP model. An
essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by
inhibiting reconnection) and the induction of a strong inflow into reconnection
region. Using a simple analytical model, we show that the plasmoid ejection and
acceleration are closely coupled with the reconnection process, leading to a
nonlinear instability for the whole dynamics that determines the macroscopic
reconnection rate uniquely. Next we show that the current sheet tends to have a
fractal structure via the following process path: tearing, sheet thinning,
Sweet- Parker sheet, secondary tearing, further sheet thinning... These
processes occur repeatedly at smaller scales until a microscopic plasma scale
(either the ion Larmor radius or the ion inertial length) is reached where
anomalous resistivity or collisionless reconnection can occur. The current
sheet eventually has a fractal structure with many plasmoids (magnetic islands)
of different sizes. When these plasmoids are ejected out of the current sheets,
fast reconnection occurs at various different scales in a highly time dependent
manner. Finally, a scenario is presented for fast reconnection in the solar
corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in
press; ps-file is also available at
http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations
The most stringent test of theoretical models of the first-order Fermi
mechanism at collisionless astrophysical shocks is a comparison of the
theoretical predictions with observational data on particle populations. Such
comparisons have yielded good agreement between observations at the
quasi-parallel portion of the Earth's bow shock and three theoretical
approaches, including Monte Carlo kinetic simulations. This paper extends such
model testing to the realm of oblique interplanetary shocks: here observations
of proton and alpha particle distributions made by the SWICS ion mass
spectrometer on Ulysses at nearby interplanetary shocks are compared with test
particle Monte Carlo simulation predictions of accelerated populations. The
plasma parameters used in the simulation are obtained from measurements of
solar wind particles and the magnetic field upstream of individual shocks. Good
agreement between downstream spectral measurements and the simulation
predictions are obtained for two shocks by allowing the the ratio of the
mean-free scattering length to the ionic gyroradius, to vary in an optimization
of the fit to the data. Generally small values of this ratio are obtained,
corresponding to the case of strong scattering. The acceleration process
appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical
Journal, February 20, 199
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in âs=13âTeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of âs=13ââTeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139ââfbâ1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015â2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Electron acceleration and heating in collisionless magnetic reconnection
We discuss electron acceleration and heating during collisionless magnetic
reconnection by using the results of implicit kinetic simulations of Harris
current sheets. We consider and compare electron dynamics in plasmas with
different \beta values and perform simulations up to the physical mass ratio.
We analyze the typical trajectory of electrons passing through the reconnection
region, we study the electron velocity, focusing on the out-of-plane velocity,
and we discuss the electron heating along the in-plane and out-of-plane
directions
Wide ultrarelativistic plasma beam -- magnetic barrier collision and astrophysical applications
The interaction between a wide ultrarelativistic fully-ionized plasma beam
and a magnetic barrier is studied numerically. It is assumed that the plasma
beam is initially homogeneous and impacts with the Lorentz factor on the barrier. The magnetic field of the barrier is uniform and
transverse to the beam velocity. When the energy densities of the beam and the
magnetic field are comparable, , the process of the beam -- barrier interaction is strongly nonstationary,
and the density of reversed protons is modulated in space by a factor of 10 or
so. The modulation of reversed protons decreases with decrease of . The
beam is found to penetrate deep into the barrier provided that , where is about 0.4. The speed of such a penetration
is subrelativistic and depends on . Strong electric fields are
generated near the front of the barrier, and electrons are accelerated in these
fields up to the mean energy of protons, i.e. up to . The
synchrotron radiation of high-energy electrons from the front vicinity is
calculated. Stationary solutions for the beam -- barrier collision are
considered. It is shown that such a solution may be only at depending on the boundary conditions for the electric field in the
region of the beam -- barrier interaction. Some astrophysical applications of
these results are briefly discussed.Comment: 11 pages, Latex (revtex), 12 postscript figures, submitted to Phys.
Rev.
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at â s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fbâ1 of â s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Satellite Observations of Separator Line Geometry of Three-Dimensional Magnetic Reconnection
Detection of a separator line that connects magnetic nulls and the
determination of the dynamics and plasma environment of such a structure can
improve our understanding of the three-dimensional (3D) magnetic reconnection
process. However, this type of field and particle configuration has not been
directly observed in space plasmas. Here we report the identification of a pair
of nulls, the null-null line that connects them, and associated fans and spines
in the magnetotail of Earth using data from the four Cluster spacecraft. With
di and de designating the ion and electron inertial lengths, respectively, the
separation between the nulls is found to be ~0.7di and an associated
oscillation is identified as a lower hybrid wave with wavelength ~ de. This in
situ evidence of the full 3D reconnection geometry and associated dynamics
provides an important step toward to establishing an observational framework of
3D reconnection.Comment: 10 pages, 3 figures and 1 tabl
Children at danger: injury fatalities among children in San Diego County
External causes of death are important in the pediatric population worldwide. We performed an analysis of all injury-fatalities in children between ages zero and 17Â years, between January 2000 and December 2006, in San Diego County, California, United States of America. Information was obtained from the County of San Diego Medical Examinerâs database. External causes were selected and grouped by intent and mechanism. Demographics, location of death and relation between the injury mechanism and time of death were described. There were 884 medico-legal examinations, of which 480 deaths were due to external causes. There majority were males (328, 68.3%) and whites (190, 39.6%). The most prevalent mechanism of injury leading to death was road traffic accidents (40.2%), followed by asphyxia (22.7%) and penetrating trauma (17.7%). Unintentional injuries occurred in 65.8% and intentional injuries, including homicide and suicide, occurred in 24.2 and 9.4%, respectively. Death occurred at the scene in 196 cases (40.9%). Most deaths occurred in highways (35.3%) and at home (28%). One hundred forty-six patients (30.4%) died in the first 24Â h. Seven percent died 1Â week after the initial injury. Among the cases that died at the scene, 48.3% were motor vehicle accidents, 20.9% were victims of firearms, 6.5% died from poisoning, 5% from hanging, and 4% from drowning. External causes remain an important cause of death in children in San Diego County. Specific strategies to decrease road-traffic accidents and homicides must be developed and implemented to reduce the burden of injury-related deaths in children
- âŠ