633 research outputs found

    Defining the buffering process by a triprotic acid without relying on stewart-electroneutrality considerations

    Get PDF
    Upon the addition of protons to an aqueous solution, a component of the H+ load will be bound i.e. buffered. In an aqueous solution containing a triprotic acid, H+ can be bound to three different states of the acid as well as to OH- ions that are derived from the auto-ionization of H2O. In quantifying the buffering process of a triprotic acid, one must define the partitioning of H+ among the three states of the acid and also the OH- ions in solution in order to predict the equilibrium pH value. However, previous quantitative approaches that model triprotic acid titration behaviour and used to predict the equilibrium pH rely on the mathematical convenience of electroneutrality/charge balance considerations. This fact has caused confusion in the literature, and has led to the assumption that charge balance/electroneutrality is a causal factor in modulating proton buffering (Stewart formulation). However, as we have previously shown, although charge balance can be used mathematically as a convenient tool in deriving various formulae, electroneutrality per se is not a fundamental physicochemical parameter that is mechanistically involved in the underlying buffering and proton transfer reactions. The lack of distinction between a mathematical tool, and a fundamental physicochemical parameter is in part a reason for the current debate regarding the Stewart formulation of acid-base analysis. We therefore posed the following question: Is it possible to generate an equation that defines and predicts the buffering of a triprotic acid that is based only on H+ partitioning without incorporating electroneutrality in the derivation? Towards this goal, we derived our new equation utilizing: 1) partitioning of H+ buffering; 2) conservation of mass; and 3) acid-base equilibria. In validating this model, we compared the predicted equilibrium pH with the measured pH of an aqueous solution consisting of Na2HPO4 to which HCl was added. The measured pH values were in excellent agreement with the predictions of our equation. Our results provide further important evidence that one can mathematically model the chemistry of acid-base phenomenology without relying on electroneutrality (Stewart formulation) considerations

    Determination of the characteristic directions of lossless linear optical elements

    Full text link
    We show that the problem of finding the primary and secondary characteristic directions of a linear lossless optical element can be reformulated in terms of an eigenvalue problem related to the unimodular factor of the transfer matrix of the optical device. This formulation makes any actual computation of the characteristic directions amenable to pre-implemented numerical routines, thereby facilitating the decomposition of the transfer matrix into equivalent linear retarders and rotators according to the related Poincare equivalence theorem. The method is expected to be useful whenever the inverse problem of reconstruction of the internal state of a transparent medium from optical data obtained by tomographical methods is an issue.Comment: Replaced with extended version as published in JM

    Rapid Change in Articulatory Lip Movement Induced by Preceding Auditory Feedback during Production of Bilabial Plosives

    Get PDF
    BACKGROUND: There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Ίa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. CONCLUSIONS/SIGNIFICANCE: The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded

    Fragment reattachment, reproductive status, and health indicators of the invasive colonial tunicate Didemnum vexillum with implications for dispersal

    Get PDF
    This manuscript is not subject to U.S. copyright. The definitive version was published in Biological Invasions 14 (2012): 2133-2140, doi:10.1007/s10530-012-0219-8.The invasive colonial tunicate Didemnum vexillum is now widespread in coastal and offshore waters of New England, USA. D. vexillum can inflict ecological and economic damage through biofouling and habitat modification. Natural and anthropogenic processes that fragment colonies of D. vexillum may be accelerating the spread of this invader. Reattachment success and fragment viability were confirmed in the laboratory after four weeks of suspension in experimental aquaria. The shape of suspended D. vexillum fragments progressed from flattened to globular spheres and then flattened again after reattachment to the substrate. Reproductive activity, confirmed by the presence of eggs and larvae, was observed for fragments suspended up to three weeks suggesting that D. vexillum is capable of reproducing while in a fragmented, suspended state. An index of colony health was used to monitor change in D. vexillum health while in suspension. Overall, colony health declined with time in suspension although colonies that appeared dead (black and gray in overall color) still contained a substantial number of healthy live zooids. These results suggest that activities that cause fragmentation can significantly facilitate the spread of D. vexillum. Coastal managers should consider reducing or eliminating, when practical, activities that return fragmented colonies of D. vexillum to the water. In-water cleaning of biofouling and dredging are likely expediting the spread of this invasive species unless biofouling can be contained and removed from the water.This research was funded by the NOAA Aquatic Invasive Species Program

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Reconciling carbon-cycle concepts, terminology, and methods

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb−1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of ΌΌ\mu \mu and eÎŒe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    Get PDF
    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies
    • 

    corecore