69 research outputs found
Synchronization of van der Pol oscillators with delayed coupling
The synchronization of self-sustained oscillators such as the van der Pol oscillator is a model for the adjustment of rhythms of oscillating objects due to their weak interaction and has wide applications in natural and technical processes. That these oscillators adjust their frequency or phase to an external forcing or mutually between several oscillators is a phenomenon which can be used in sound synthesis for various purposes. In this paper we focus on the influence of delays on the synchronization properties of these oscillators. As there is no general theory yet on this topic, we mainly present simulation results, together with some background on the non-delayed case. Finally, the theory is also applied in Neukom’s studies 21.1-21.9
Opto-electronic characterization of third-generation solar cells
We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC70BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified
Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects
The eruption of Tambora (Indonesia) in April 1815 had substantial effects on global climate and led to the ‘Year Without a Summer’ of 1816 in Europe and North America. Although a tragic event—tens of thousands of people lost their lives—the eruption also was an ‘experiment of nature’ from which science has learned until today. The aim of this study is to summarize our current understanding of the Tambora eruption and its effects on climate as expressed in early instrumental observations, climate proxies and geological evidence, climate reconstructions, and model simulations. Progress has been made with respect to our understanding of the eruption process and estimated amount of SO2 injected into the atmosphere, although large uncertainties still exist with respect to altitude and hemispheric distribution of Tambora aerosols. With respect to climate effects, the global and Northern Hemispheric cooling are well constrained by proxies whereas there is no strong signal in Southern Hemisphere proxies. Newly recovered early instrumental information for Western Europe and parts of North America, regions with particularly strong climate effects, allow Tambora's effect on the weather systems to be addressed. Climate models respond to prescribed Tambora-like forcing with a strengthening of the wintertime stratospheric polar vortex, global cooling and a slowdown of the water cycle, weakening of the summer monsoon circulations, a strengthening of the Atlantic Meridional Overturning Circulation, and a decrease of atmospheric CO2. Combining observations, climate proxies, and model simulations for the case of Tambora, a better understanding of climate processes has emerged
Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain
A variety of experiments on vacuum-deposited methylammonium lead iodide perovskite solar cells are presented, including JV curves with different scan rates, light intensity-dependent open-circuit voltage, impedance spectra, intensity-modulated photocurrent spectra, transient photocurrents, and transient voltage step responses. All these experimental data sets are successfully reproduced by a charge drift-diffusion simulation model incorporating mobile ions and charge traps using a single set of parameters. While previous modeling studies focused on a single experimental technique, we combine steady-state, transient, and frequency-domain simulations and measurements. Our study is an important step toward quantitative simulation of perovskite solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the transient current upon voltage turn-on in the dark reveals that the charge injection properties of the interfaces are triggered by the accumulation of mobile ionic defects. We show that the current rise of voltage step experiments allow for conclusions about the recombination at the interface. Whether one or two mobile ionic species are used in the model has only a minor influence on the observed effects. A delayed current rise observed upon reversing the bias from +3 to -3 V in the dark cannot be reproduced yet by our drift-diffusion model. We speculate that a reversible chemical reaction of mobile ions with the contact material may be the cause of this effect, thus requiring a future model extension. A parameter variation is performed in order to understand the performance-limiting factors of the device under investigation
Recommended from our members
Evaluation of a modern-analogue methodology for reconstructing Australian palaeoclimate from pollen
Quantitative palaeoclimate reconstructions are widely used to evaluate climatemodel performance. Here, as part of an effort to provide such a data set for Australia, we examine the impact of analytical decisions and sampling assumptions on modern-analogue reconstructions using a continent-wide pollen data set. There is a high degree of correlation between temperature variables in the modern climate of Australia, but there is sufficient orthogonality in the variations of precipitation, summer and winter temperature and plant–available moisture to allow
independent reconstructions of these four variables to be made. The method of analogue selection does not affect the reconstructions, although bootstrap resampling provides a more reliable technique for obtaining robust measures of uncertainty. The number of analogues used affects the quality of the reconstructions: the most robust reconstructions are obtained using 5 analogues. The quality of reconstructions based on post-1850 CE pollen samples differ little from those using samples from between 1450 and 1849 CE, showing that European post settlement
modification of vegetation has no impact on the fidelity of the reconstructions although it substantially increases the availability of potential analogues. Reconstructions based on core top samples are more realistic than those using surface samples, but only using core top samples would substantially reduce the number of available analogues and therefore increases the uncertainty of the reconstructions. Spatial and/or temporal averaging of pollen assemblages prior to analysis negatively affects the subsequent reconstructions for some variables and increases the associated uncertainties. In addition, the quality of the reconstructions is affected by the degree
of spatial smoothing of the original climate data, with the best reconstructions obtained using climate data froma 0.5° resolution grid, which corresponds to the typical size of the pollen catchment. This study provides a methodology that can be used to provide reliable palaeoclimate reconstructions for Australia, which will fill in a major gap in the data sets used to evaluate climate models
Recommended from our members
The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe
Changes in climate affected human societies throughout the last millennium. While European cold periods
in the 17th and 18th century have been assessed in detail, earlier cold periods received much less attention due to sparse information available. New evidence from proxy archives, historical documentary sources and climate model simulations permit us to provide an interdisciplinary, systematic assessment of an exceptionally cold period in the 15th century. Our assessment includes the role of internal, unforced climate variability and external forcing in shaping extreme climatic conditions and the impacts on and responses of the medieval society in north-western and central Europe. Climate reconstructions from a multitude of natural and anthropogenic archives indicate that the 1430s were the coldest decade in north-western and central Europe in the 15th century. This decade is characterised by cold winters and average to warm summers resulting in a strong seasonal cycle in temperature. Results from comprehensive climate models indicate consistently that these conditions occurred by chance due to the partly chaotic internal variability within the climate system. External forcing like volcanic eruptions tends to reduce simulated temperature seasonality and cannot explain the reconstructions. The strong seasonal cycle in temperature reduced food production and led to increasing food prices, a subsistence crisis and a famine in parts of Europe. Societies were not prepared to cope with failing markets and interrupted trade routes. In response to the crisis, authorities implemented numerous measures of supply policy and adaptation such as the installation of grain storage capacities to be prepared for future food production shortfalls
Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments
The Antarctic temperature changes over the past millennia remain more uncertain than in many other continental regions. This has several origins: (1) the number of high-resolution ice cores is small, in particular on the East Antarctic plateau and in some coastal areas in East Antarctica; (2) the short and spatially sparse instrumental records limit the calibration period for reconstructions and the assessment of the methodologies; (3) the link between isotope records from ice cores and local climate is usually complex and dependent on the spatial scales and timescales investigated. Here, we use climate model results, pseudoproxy experiments and data assimilation experiments to assess the potential for reconstructing the Antarctic temperature over the last 2 millennia based on a new database of stable oxygen isotopes in ice cores compiled in the framework of Antarctica2k (Stenni et al.,). The well-known covariance between δ 18 O and temperature is reproduced in the two isotope-enabled models used (ECHAM5/MPI-OM and ECHAM5-wiso), but is generally weak over the different Antarctic regions, limiting the skill of the reconstructions. Furthermore, the strength of the link displays large variations over the past millennium, further affecting the potential skill of temperature reconstructions based on statistical methods which rely on the assumption that the last decades are a good estimate for longer temperature reconstructions. Using a data assimilation technique allows, in theory, for changes in the δ 18 O-temperature link through time and space to be taken into account. Pseudoproxy experiments confirm the benefits of using data assimilation methods instead of statistical methods that provide reconstructions with unrealistic variances in some Antarctic subregions. They also confirm that the relatively weak link between both variables leads to a limited potential for reconstructing temperature based on δ 18 O. However, the reconstruction skill is higher and more uniform among reconstruction methods when the reconstruction target is the Antarctic as a whole rather than smaller Antarctic subregions. This consistency between the methods at the large scale is also observed when reconstructing temperature based on the real δ 18 O regional composites of Stenni et al. (2017). In this case, temperature reconstructions based on data assimilation confirm the long-term cooling over Antarctica during the last millennium, and the later onset of anthropogenic warming compared with the simulations without data assimilation, which is especially visible in West Antarctica. Data assimilation also allows for models and direct observations to be reconciled by reproducing the east-west contrast in the recent temperature trends. This recent warming pattern is likely mostly driven by internal variability given the large spread of individual Paleoclimate Modelling Intercomparison Project (PMIP)/Coupled Model Intercomparison Project (CMIP) model realizations in simulating it. As in the pseudoproxy framework, the reconstruction methods perform differently at the subregional scale, especially in terms of the variance of the time series produced. While the potential benefits of using a data assimilation method instead of a statistical method have been highlighted in a pseudoproxy framework, the instrumental series are too short to confirm this in a realistic setup
Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries
We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901-1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales
Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries
This paper aims at providing insight about bromine (Br) cycle in four Portuguese estuaries: Minho, Lima (in the NW coast) and Sado, Mira (in the SW coast). The focus is on their tidal marsh environments, quite distinct with regard to key biophysicochemical attributes. Regardless of the primary bromide (Br-) common natural source, i.e., seawater, the NW marshes present relatively higher surface soil/sediment Br concentrations than the ones from SW coast. This happens in close connection with organic matter (OM) content, and is controlled by their main climatic contexts. Yet, the anthropogenic impact on Br concentrations cannot be discarded. Regarding [Br] spatial patterns across the marshes, the results show a general increase from tidal flat toward high marsh. Maxima [Br] occur in the upper driftline zone, at transition from highest low marsh to high marsh, recognized as a privileged setting for OM accumulation. Based on the discovery of OM ubiquitous bromination in marine and transitional environments, it is assumed that this Br occurs mainly as organobromine. Analysis of two dated sediment cores indicates that, despite having the same age (AD ~1300), the Caminha salt marsh (Minho estuary) evidences higher Br enrichment than the Casa Branca salt marsh (Mira estuary). This is related to a greater Br storage ability, which is linked to OM build-up and rate dynamics under different climate scenarios. Both cores evidence a fairly similar temporal Br enrichment pattern, and may be interpreted in light of the sun-climate coupling. Thereby, most of the well-known Grand Solar Minima during the Little Ice Age appear to have left an imprint on these marshes, supported by higher [Br] in soils/sediments. Besides climate changes driven by solar activity and impacting marsh Br biogeodynamics, those Br enrichment peaks might also reflect inputs of enhanced volcanic activity covarying with Grand Solar Minima.This work was partly supported by IDL through the UID/GEO/50019/2013 program, by C2
TN through the UID/Multi/04349/2013 program, and is a contribution of the project WestLog (PTDC/CTE/105370/2008), funded by the Fundação para a Ciência e a Tecnologia (FCT). João
Moreno benefits from a FCT PhD grant (SFRH/BD/87995/2012). J.J. Gómez-Navarro acknowledges the funding provided through the contract for the return of experienced researches, resolution R-735/2015 of the University of Murcia.info:eu-repo/semantics/publishedVersio
- …