84 research outputs found

    Thermo-Mechanical Effect on Poly Crystalline Boron Nitride Tool Life During Friction Stir Welding (Dwell Period)

    Get PDF
    Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool’s binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model

    Treatment of Hepatitis C as Prevention: A Modeling Case Study in Vietnam

    Get PDF
    Background: Treatment of hepatitis C (HCV) is very effective, achieving a cure in 50–90 % of patients. Besides its own good for individuals, this most likely translates in reduced transmission, but this phenomenon has yet to be fully explored. Methods and Findings: In this mathematical modeling study done in the context of Vietnam, we estimated the public health benefit that HCV therapy for injecting drug users (IDUs) may achieve. Treatment coverage of 25, 50 and 75 % of chronically HCV-infected IDUs (4 years into infection) is predicted to reduce the chronic HCV viremia prevalence respectively by 21, 37 and 50%, 11 years after full scale up to the intended coverage. At a constant 50 % coverage level, earlier treatment, 3, 2, and 1 year into infection is predicted to reduce the chronic HCV viremia prevalence by 46, 60 and 85%. In these later 3 scenarios, for every 100 treatment courses provided, a total of respectively 50, 61 and 94 new infections could be averted. These benefits were projected in the context of current low coverage of methadone maintenance therapy and needles/ syringes exchange programs, and these services expansion showed complementary preventive benefits to HCV therapy. The program treatment commitment associated with the various scenarios is deemed reasonable. Our model projections are robust under adjustment for uncertainty in the model parameter values. Conclusions: In this case study in Vietnam, we project that treatment of HCV for injecting drug users will have a preventative herd effect in addition to curing patients in need for therapy, achieving a substantial reduction in HCV transmission an

    A Novel Role of RASSF9 in Maintaining Epidermal Homeostasis

    Get PDF
    The physiological role of RASSF9, a member of the Ras-association domain family (RASSF), is currently unclear. Here, we report a mouse line in which an Epstein-Barr virus Latent Membrane Protein 1 (LMP1) transgene insertion has created a 7.2-kb chromosomal deletion, which abolished RASSF9 gene expression. The RASSF9-null mice exhibited interesting phenotypes that resembled human ageing, including growth retardation, short lifespan, less subcutaneous adipose layer and alopecia. In the wild-type mice, RASSF9 is predominantly expressed in the epidermal keratinocytes of skin, as determined by quantitative reverse-transcription PCR, immunofluorescence and in situ hybridization. In contrast, RASSF9−/− mice presented a dramatic change in epithelial organization of skin with increased proliferation and aberrant differentiation as detected by bromodeoxyuridine incorporation assays and immunofluorescence analyses. Furthermore, characteristic functions of RASSF9−/− versus wild type (WT) mouse primary keratinocytes showed significant proliferation linked to a reduction of p21Cip1 expression under growth or early differentiation conditions. Additionally, in RASSF9−/− keratinocytes there was a drastic down-modulation of terminal differentiation markers, which could be rescued by infection with a recombinant adenovirus, Adv/HA-RASSF9. Our results indicate a novel and significant role of RASSF9 in epidermal homeostasis

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders

    Get PDF
    BACKGROUND: Autism spectrum disorders (ASDs) likely involve dysregulation of multiple genes related to brain function and development. Abnormalities in individual regulatory small non-coding RNA (sncRNA), including microRNA (miRNA), could have profound effects upon multiple functional pathways. We assessed whether a brain region associated with core social impairments in ASD, the superior temporal sulcus (STS), would evidence greater transcriptional dysregulation of sncRNA than adjacent, yet functionally distinct, primary auditory cortex (PAC). METHODS: We measured sncRNA expression levels in 34 samples of postmortem brain from STS and PAC to find differentially expressed sncRNA in ASD compared with control cases. For differentially expressed miRNA, we further analyzed their predicted mRNA targets and carried out functional over-representation analysis of KEGG pathways to examine their functional significance and to compare our findings to reported alterations in ASD gene expression. RESULTS: Two mature miRNAs (miR-4753-5p and miR-1) were differentially expressed in ASD relative to control in STS and four (miR-664-3p, miR-4709-3p, miR-4742-3p, and miR-297) in PAC. In both regions, miRNA were functionally related to various nervous system, cell cycle, and canonical signaling pathways, including PI3K-Akt signaling, previously implicated in ASD. Immune pathways were only disrupted in STS. snoRNA and pre-miRNA were also differentially expressed in ASD brain. CONCLUSIONS: Alterations in sncRNA may underlie dysregulation of molecular pathways implicated in autism. sncRNA transcriptional abnormalities in ASD were apparent in STS and in PAC, a brain region not directly associated with core behavioral impairments. Disruption of miRNA in immune pathways, frequently implicated in ASD, was unique to STS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0029-9) contains supplementary material, which is available to authorized users

    Characterisation of the Theileria orientalis Piroplasm Proteome across Three Common Genotypes.

    Full text link
    Theileria orientalis is an emerging apicomplexan pathogen of cattle occurring in areas populated by the principal vector tick, Haemaphysalis longicornis. Unlike transforming Theileria spp. that induce cancer-like proliferation of lymphocytes via their schizont stage, T. orientalis destroys host erythrocytes during its piroplasm phase resulting in anaemia. The underlying pathogenic processes of T. orientalis infection are poorly understood; consequently, there are no vaccines for prevention of T. orientalis infection and chemotherapeutic options are limited. To identify antigens expressed during the piroplasm phase of T. orientalis, including those which may be useful targets for future therapeutic development, we examined the proteome across three common genotypes of the parasite (Ikeda, Chitose and Buffeli) using preparations of piroplasms purified from bovine blood. A combination of Triton X-114 extraction, one-dimensional electrophoresis and LC-MS/MS identified a total of 1113 proteins across all genotypes, with less than 3% of these representing host-derived proteins. Just over three quarters of T. orientalis proteins (78%) identified were from the aqueous phase of the TX-114 extraction representing cytosolic proteins, with the remaining 22% from the detergent phase, representing membrane-associated proteins. All enzymes involved in glycolysis were expressed, suggesting that this is the major metabolic pathway used during the T. orientalis piroplasm phase. Proteins involved in binding and breakdown of haemoglobin were also identified, suggesting that T. orientalis uses haemoglobin as a source of amino acids. A number of proteins involved in host cell interaction were also identified which may be suitable targets for the development of chemotherapeutics or vaccines

    An epizootic of Chlamydia psittaci equine reproductive loss associated with suspected spillover from native Australian parrots article

    Full text link
    © 2018 The Author(s). Chlamydia psittaci is an avian pathogen capable of spill-over infections to humans. A parrot C. psittaci strain was recently detected in an equine reproductive loss case associated with a subsequent cluster of human C. psittaci infections. In this study, we screened for C. psittaci in cases of equine reproductive loss reported in regional New South Wales, Australia during the 2016 foaling season. C. psittaci specific-PCR screening of foetal and placental tissue samples from cases of equine abortion (n = 161) and foals with compromised health status (n = 38) revealed C. psittaci positivity of 21.1% and 23.7%, respectively. There was a statistically significant geographical clustering of cases ~170 km inland from the mid-coast of NSW (P < 0.001). Genomic analysis and molecular typing of C. psittaci positive samples from this study and the previous Australian equine index case revealed that the equine strains from different studs in regional NSW were clonal, while the phylogenetic analysis revealed that the C. psittaci strains from both Australian equine disease clusters belong to the parrot-associated 6BC clade, again indicative of spill-over of C. psittaci infections from native Australian parrots. The results of this work suggest that C. psittaci may be a more significant agent of equine reproductive loss than thought. A range of studies are now required to evaluate (a) the exact role that C. psittaci plays in equine reproductive loss; (b) the range of potential avian reservoirs and factors influencing infection spill-over; and (c) the risk that these equine infections pose to human health
    corecore