387 research outputs found

    Identity Formation and Role Expansion for Nurse Practitioner Residency Preceptors: A Qualitative Thematic Analysis

    Get PDF
    Employer-based nurse practitioner residency programs have been implemented to address the significant shortage of primary care providers in the community clinic settings. However, there continues to be a shortage of clinicians who serve as preceptors to nurse practitioner residents and students. Preceptors, also referred to as clinician educators, are essential in the training of learners and their socialization into the profession. Just as there is a shortage of clinicians of diverse backgrounds to reflect the population served in the community, there is also a significant shortage of preceptors of color to train learners from diverse backgrounds. The purpose of this descriptive qualitative reflexive thematic analysis study is to examine the needs and lived experience of community-based clinicians who precept NP residents in four Federally Qualified Health Centers (FQHCs). The study explored the preceptors’ identity formation and role expansion process, as well as how communities of practice may have shaped their experience. Additionally, the intersectionality of race and gender in these processes were explored. Twelve participants each completed a one-hour semi-structured interview via Zoom. Key findings from the study revealed that the culture and leadership within each FQHC sets the stage for clinician educator identity formation and engagement. Clinician educators held multiple identities and the strength of the identities determined the support of their role expansion and engagement within the communities of practice. Four themes emerged from their role expansion experience: 1) benefits of role expansion, 2) expectations and preparation, 3) tension in balancing all their roles, and 4) compensation for the added role. Facilitating factors in expanding existing community of practice for clinicians to communities of practice for clinician educators were identified. The intersectionality of race and gender discussions were limited, and recommendations for practice and future research are presented. Results from this study set the stage for further exploration of how best to support clinicians in their expansion to clinician educators as well as benefit preceptors across all levels of learners. Confident and skillful clinician educators can prepare and retain the next generation of clinicians to care for the most vulnerable and underserved populations

    Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV)

    Get PDF
    BACKGROUND: Severe acute respiratory syndrome (SARS), a recent epidemic human disease, is caused by a novel coronavirus (SARS-CoV). First reported in Asia, SARS quickly spread worldwide through international travelling. As of July 2003, the World Health Organization reported a total of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological damages may account for the severity of respiratory distress, little is known about how the genome-wide gene expression of the host changes under the attack of SARS-CoV. RESULTS: Based on changes in gene expression of peripheral blood, we identified 52 signature genes that accurately discriminated acute SARS patients from non-SARS controls. While a general suppression of gene expression predominated in SARS-infected blood, several genes including those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS patients by generalized associate plots (GAP) according to the expression profiles of 52 signature genes. Through this method, we discovered a smooth transition pattern of severity from normal controls to acute SARS patients. The rank of SARS severity was significantly correlated with the recovery period (in days) and with the clinical pulmonary infection score. CONCLUSION: The use of the GAP approach has proved useful in analyzing the complexity and continuity of biological systems. The severity rank derived from the global expression profile of significantly regulated genes in patients may be useful for further elucidating the pathophysiology of their disease

    The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024

    Full text link
    The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 addresses maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). Three challenges categories are considered: (i) UAV-based Maritime Object Tracking with Re-identification, (ii) USV-based Maritime Obstacle Segmentation and Detection, (iii) USV-based Maritime Boat Tracking. The USV-based Maritime Obstacle Segmentation and Detection features three sub-challenges, including a new embedded challenge addressing efficicent inference on real-world embedded devices. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 195 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi24.Comment: Part of 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 IEEE Xplore submission as part of WACV 202

    New Insight into the Transcarbamylase Family: The Structure of Putrescine Transcarbamylase, a Key Catalyst for Fermentative Utilization of Agmatine

    Get PDF
    Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about putrescine transcarbamylase (PTC), the enzyme that generates CP for ATP production in the fermentative catabolism of agmatine. We demonstrate that PTC (from Enterococcus faecalis), in addition to using putrescine, can utilize L-ornithine as a poor substrate. Crystal structures at 2.5 Å and 2.0 Å resolutions of PTC bound to its respective bisubstrate analog inhibitors for putrescine and ornithine use, N-(phosphonoacetyl)-putrescine and δ-N-(phosphonoacetyl)-L-ornithine, shed light on PTC preference for putrescine. Except for a highly prominent C-terminal helix that projects away and embraces an adjacent subunit, PTC closely resembles OTCs, suggesting recent divergence of the two enzymes. Since differences between the respective 230 and SMG loops of PTC and OTC appeared to account for the differential preference of these enzymes for putrescine and ornithine, we engineered the 230-loop of PTC to make it to resemble the SMG loop of OTCs, increasing the activity with ornithine and greatly decreasing the activity with putrescine. We also examined the role of the C-terminal helix that appears a constant and exclusive PTC trait. The enzyme lacking this helix remained active but the PTC trimer stability appeared decreased, since some of the enzyme eluted as monomers from a gel filtration column. In addition, truncated PTC tended to aggregate to hexamers, as shown both chromatographically and by X-ray crystallography. Therefore, the extra C-terminal helix plays a dual role: it stabilizes the PTC trimer and, by shielding helix 1 of an adjacent subunit, it prevents the supratrimeric oligomerizations of obscure significance observed with some OTCs. Guided by the structural data we identify signature traits that permit easy and unambiguous annotation of PTC sequences

    Glutathione in Cancer Cell Death

    Get PDF
    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore