302 research outputs found

    The interplay between conformation and absolute configuration in chiral electron dynamics of small diols

    Get PDF
    A competition between chiral characteristics alternatively attributable to either conformation or to absolute configuration is identified. Circular dichroism associated with photoexcitation of the outer orbital of configurational enantiomers of 1,3- and 2,3-butanediols has been examined with a focus on the large changes in electron chiral asymmetry produced by different molecular conformations. Experimental gas phase measurements offer support for the theoretical modelling of this chiroptical effect. A surprising prediction is that a conformationally produced pseudoenantiomerism in 1,3-butanediol generates a chiral response in the frontier electron dynamics that effectively outweighs the influence of the permanent configurational handedness established at the asymmetrically substituted carbon. Induced conformation, and specifically induced conformational chirality, may thus be a dominating factor in chiral molecular recognition in such systems

    Phonon-assisted radiofrequency absorption by gold nanoparticles resulting in hyperthermia

    Full text link
    It is suggested that in gold nanoparticles (GNPs) of about 5 nm sizes used in the radiofrequency (RF) hyperthermia, an absorption of the RF photon by the Fermi electron occurs with involvement of the longitudinal acoustic vibrational mode (LAVM), the dominating one in the distribution of vibrational density of states (VDOS). This physical mechanism helps to explain two observed phenomena: the size dependence of the heating rate (HR) in GNPs and reduced heat production in aggregated GNPs. The argumentation proceeds within the one-electron approximation, taking into account the discretenesses of energies and momenta of both electrons and LAVMs. The heating of GNPs is thought to consist of two consecutive processes: first, the Fermi electron absorbs simultaneously the RF photon and the LAVM available in the GNP; hereafter the excited electron gets relaxed within the GNP's boundary, exciting a LAVM with the energy higher than that of the previously absorbed LAVM. GNPs containing the Ta and/or Fe impurities are proposed for the RF hyperthermia as promising heaters with enhanced HRs, and GNPs with rare-earth impurity atoms are also brought into consideration. It is shown why the maximum HR values should be expected in GNPs with about 5-7 nm size.Comment: proceedings at the NATO Advanced Research workshop FANEM-2015 (Minsk, May 25-27, 2015). To be published in the final form in: "Fundamental and Applied NanoElectroMagnetics" (Springer Science + Business Media B.V.

    Nanostructured luminescently labeled nucleic acids

    Get PDF
    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods

    Correction to "Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission"

    Get PDF
    Correction to “Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission

    Recognition of Chiral Carboxylic Anions by Artificial Receptors

    Get PDF
    Many carboxylic molecules, ranging from drugs to flavors and fragrances, contain chiral centers. As a consequence, research has been carried out in order to design and synthesize artificial receptors for carboxylic anions. Many problems have to be solved for binding anions. The results obtained in the binding of carboxylic anions by guanidine, secondary ammonium and metal-center have been selected. The last part of this review focuses on chiral recognition of carboxylic anions by organic and metal-based chiral receptors

    Self-Association of Organic Solutes in Solution: A NEXAFS Study of Aqueous Imidazole

    Get PDF
    N K-edge near-edge X-ray absorption fine-structure (NEXAFS) spectra of imidazole in concentrated aqueous solutions have been acquired. The NEXAFS spectra of the solution species differ significantly from those of imidazole monomers in the gas phase and in the solid state of imidazole, demonstrating the strong sensitivity of NEXAFS to the local chemical and structural environment. In a concentration range from 0.5 to 8.2 mol L−1 the NEXAFS spectrum of aqueous imidazole does not change strongly, confirming previous suggestions that imidazole self-associates are already present at concentrations more dilute than the range investigated here. We show that various types of electronic structure calculations (Gaussian, StoBe, CASTEP) provide a consistent and complete interpretation of all features in the gas phase and solid state spectra based on ground state electronic structure. This suggests that such computational modelling of experimental NEXAFS will permit an incisive analysis of the molecular interactions of organic solutes in solutions. It is confirmed that microhydrated clusters with a single imidazole molecule are poor models of imidazole in aqueous solution. Our analysis indicates that models including both a hydrogen-bonded network of hydrate molecules, and imidazole–imidazole interactions, are necessary to explain the electronic structure evident in the NEXAFS spectra

    Supramolecularly directed rotary motion in a photoresponsive receptor

    Get PDF
    Stimuli-controlled motion at the molecular level has fascinated chemists already for several decades. Taking inspiration from the myriad of dynamic and machine-like functions in nature, a number of strategies have been developed to control motion in purely synthetic systems. Unidirectional rotary motion, such as is observed in ATP synthase and other motor proteins, remains highly challenging to achieve. Current artificial molecular motor systems rely on intrinsic asymmetry or a specific sequence of chemical transformations. Here, we present an alternative design in which the rotation is directed by a chiral guest molecule, which is able to bind non-covalently to a light-responsive receptor. It is demonstrated that the rotary direction is governed by the guest chirality and hence, can be selected and changed at will. This feature offers unique control of directional rotation and will prove highly important in the further development of molecular machinery

    Boosting self‐assembly diversity in the solid‐state by chiral/non‐chiral ZnII‐porphyrin crystallization

    Get PDF
    This work bases on the solid‐state study of a chiral ZnII‐porphyrin derivative (5,10,15,20‐tetra[(4‐R,R,R,R)‐methyl‐2‐phenoxy‐propanoate, 1) building block and its achiral analogous (2). Here, foreseen the rich molecular recognition of the designed metallo‐porphyrins (1 and 2) and tendency to crystallize, we recrystallized both using two sets of solvents (CH2Cl2/CH3OH and CH2Cl2/hexane). As a result, four different crystalline arrangements (1a‐b, 2a‐b, from 0D to 2D) were successfully achieved. We performed solid state studies for all the species, analysing the role played by chirality, solvent mixtures and surfaces (mica and HOPG), on the supramolecular arrangements. As for the combination of solvents and substrates we obtained a variety of micro‐sized species, from vesicles to flower‐shaped arrays, including geometrical microcrystals. Overall, our results emphasize the environmental susceptibility of metallo‐porphyrins and how this feature must be taken into account in their design

    The CHUVA Lightning Mapping Campaign

    Get PDF
    The primary science objective for the CHUVA lightning mapping campaign is to combine measurements of total lightning activity, lightning channel mapping, and detailed information on the locations of cloud charge regions of thunderstorms with the planned observations of the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement) field campaign. The lightning campaign takes place during the CHUVA intensive observation period October-December 2011 in the vicinity of S o Luiz do Paraitinga with Brazilian, US, and European government, university and industry participants. Total lightning measurements that can be provided by ground-based regional 2-D and 3-D total lightning mapping networks coincident with overpasses of the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (LIS) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat Second Generation satellite in geostationary earth orbit will be used to generate proxy data sets for the next generation US and European geostationary satellites. Proxy data, which play an important role in the pre-launch mission development and in user readiness preparation, are used to develop and validate algorithms so that they will be ready for operational use quickly following the planned launch of the GOES-R Geostationary Lightning Mapper (GLM) in 2015 and the Meteosat Third Generation Lightning Imager (LI) in 2017. To date there is no well-characterized total lightning data set coincident with the imagers. Therefore, to take the greatest advantage of this opportunity to collect detailed and comprehensive total lightning data sets, test and validate multi-sensor nowcasting applications for the monitoring, tracking, warning, and prediction of severe and high impact weather, and to advance our knowledge of thunderstorm physics, extensive measurements from lightning mapping networks will be collected in conjunction with electric field mills, field change sensors, high speed cameras and other lightning sensors, dual-polarimetric radars, and aircraft in-situ microphysics which will allow for excellent cross-network inter-comparisons, assessments, and physical understanding
    corecore