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Abstract 

A competition between chiral characteristics alternatively attributable to 

either conformation or to absolute configuration is identified. Circular 

dichroism associated with photoexcitation of the outer orbital of 

configurational enantiomers of 1,3- and 2,3-butanediols has been examined 

with a focus on the large changes in electron chiral asymmetry produced by 

different molecular conformations. Experimental gas phase measurements 

offer support for the theoretical modelling of this chiroptical effect. A 

surprising prediction is that a conformationally produced pseudo-

enantiomerism in 1,3-butanediol generates a chiral response in the frontier 

electron dynamics that effectively outweighs the influence of the permanent 

configurational handedness established at the asymmetrically substituted 

carbon. Induced conformation, and specifically induced conformational 

chirality, may thus be a dominating factor in chiral molecular recognition in 

such systems.  

 

Concepts describing molecular shape lie at the heart of much intuitive thinking about 

chemical reaction and interaction, from the simplest nucleophilic substitution processes to 

more complex enzyme interactions. Central to such considerations is the role of molecular 

chirality and consequent specificity of chiral recognition. Because macro-biomolecules tend 

to be chiral and built from smaller chiral units, an appreciation of how chiral information 

transfers at the molecular level assumes a wide-ranging significance for understanding the 

mechanisms of asymmetric synthesis. This includes the building up of supra-molecular 

chirality and the many enantioselective processes of life (odor perception, pharmaceutical 

action, etc.). The commonest source of molecular chirality is, of course, an asymmetrically 

substituted carbon —a configurational chirality that could be considered to be hard-wired into 

the molecule.  Among other sources of chirality one also encounters the possibility for 

molecular handedness to arise from a particular conformation. Chiral induction, the process 

whereby a static chirality can be induced in a prochiral or transiently chiral species by 

interaction with a moiety of specific chirality, without a requirement for bond-breaking, is a 

central topic in this context.
[1-3]

 Relatively weak intermolecular forces, such as H-bonding, 

are often then implicated in the chirality transmission mechanisms and gas-phase studies, that 
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remove a multitude of fluctuating solvent interactions of comparable energy that might 

obscure the intrinsic effect, have an important role to play.
[4]

 

Here we examine exhibited chirality using photoelectron circular dichroism (PECD). A 

particular advantage over other chiroptical measures is that PECD provides an orbitally 

selective probe of molecular chirality,
[5-7]

 allowing specific focus to be given to responses of 

the HOMO frontier orbital. Specifically, PECD isolates and extracts the phenomenological 

coefficient, 𝑏1
{+1}

, of an odd cos 𝜃 term in the photoelectron angular distribution (See 

Supporting Information and Refs 
[5, 6]

) which can then directly express the chiral asymmetry 

observed in the forward-backward (𝜃 = 0, 𝜋) directions as a Kuhn asymmetry factor, 

𝑔 = 2𝑏1
{+1}

 . From a theoretical perspective for interpretation, the  𝑏1
{+1}

 parameter embodies 

the dynamics of the mobile electron
[5]

 as it is ejected from the selected orbital and moves out 

through the chiral potential of the molecular framework. 

The small diols we consider here — 1,3 propanediol (13PD), 1,3R butanediol (13BD), and 

2R,3R butanediol (23BD) — are flexible molecules with rotation around various bonds 

providing numerous possible conformations, but the energetically most favorable ones are 

significantly stabilized by the formation of intramolecular H-bonds.  In Figure 1 we compare 

the two most stable conformers calculated for 13PD 
[8, 9]

 and those calculated for 13BD. 
[10, 11]

 

The four letter designations used in this literature — g′GG′t and tGG′g —  describe the four 

dihedral angles defining the structures; for brevity we also show and will use an alternative 

Roman numeral numbering. 

These two most stable 13PD conformers can be seen to constitute an enantiomeric pair, 

related by the hindered rotation of the OH groups. However, as in many such conformational 

enantiomers these chiral structures rapidly interconvert. In 13PD the relevant tunneling 

frequency is found to be 5.42 MHz
[9]

 and consequently its chirality is transient. Nevertheless, 

it is interesting to examine the instantaneous chirality. Theoretical calculations for the 

HOMO photoionization are presented in Figure 2. In particular we discuss here the non-zero 

chiral 𝑏1
{+1}

 parameter values that appear in the lower panel. Just as for any chiroptical 

asymmetry, exchanging the enantiomers (here conformers) flips the sign of 𝑏1
{+1}

. The 

(transient) conformational enantiomerism of 13PD is thus evidenced in the exact mirroring of 

the calculated 𝑏1
{+1}

 curves shown for this molecule. 



4 
 

It can be expected that methyl group substitution at the C(3) atom in 13PD, to form  13BD, 

will effectively quench the tunneling identified in 13PD by destroying the C(1):C(3) 

equivalence and, consequently, the symmetric double well inversion potential.
[12]

 This is fully 

corroborated by the observation of uncoupled asymmetric top spectra for the I and II  pair of 

13BD, indicating their existence as distinct conformers.
[10, 11]

 But such  addition of a methyl 

also creates an asymmetric substitution at the C(3) site, so generating permanent 

configurational enantiomerism in 13BD, with separable R,S enantiomers. Nevertheless, as 

can be seen in Figure 2, the calculated HOMO ionization cross section and anisotropy 

parameter, , (both enantiomer independent properties) retain many similarities to those for 

13PD. More remarkably, the chirally sensitive 𝑏1
{+1}

 parameter curves for the two most stable 

13BD conformers I and II also still approximate the chiral mirroring seen for the analogous 

conformers of 13PD, albeit for a fixed choice (R-) of 13BD configurational enantiomer.  The 

strong visual similarities between the low energy structures of 13PD and 13BD (Figure 1) 

and between their 𝑏1
{+1}

 parameter curves (Figure 2) suggests some residual conformational 

enantiomerism in 13BD such that, for fixed absolute configuration, conformers I and II 

effectively constitute a pseudo-enantiomeric pair. (An entirely analogous argument could be 

developed for the 3S- configuration and its corresponding conformers).  

This suggested pseudo-enantiomerism is further underscored by examining 13PD and 13BD 

HOMO orbital isosurface visualizations (Figure 3). Because of the strongly localized HOMO 

character, the (pseudo-) enantiomerism is seen to be equally imprinted on the HOMO orbitals 

of both 13PD and 13BD in a manner that is not encountered with other, more delocalized 

valence orbitals. 

Before further discussing 13BD we turn to an examination of its isomer, 2,3 butanediol. A 

computational investigation of the conformer space of 23BD has been previously reported by 

Jesus et al.
[13]

 The three most stable 2R,3R conformers (designated 
[13]

 I, II, III) are shown in 

Figure 4. These are estimated to jointly account for 90% of the room temperature population, 

and >99% at 100K. Our own calculations, summarized in Table S1, replicate the energetics 

reported previously.
[13, 14]

 Experimentally, a molecular beam Fourier Transform microwave 

spectroscopy study
[14]

 has unambiguously identified conformer I as the dominant species 

present in jet-cooled conditions. Employing a similar cold molecular beam for an 

experimental PECD measurement we therefore have the opportunity to examine, effectively, 

a single isomer conformer. 
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Jet cooled experimental results showing mean HOMO electron PECD values for 2R,3R 

butanediol, recorded at various photon excitation energies, are presented in Figure 5 along 

with calculated 𝑏1
{+1}

parameter curves for single conformers I – III and for an assumed 100 

K conformer population average . Good agreement with the calculated PECD for the most 

stable conformer I is demonstrated, while significant contributions (more than the 15% 

expected for a 100 K Boltzmann distribution) from conformers II and III can be discounted, 

corroborating previous experiments.
[14]

  

Having thus validated the theoretical method applied here to study HOMO PECD of single 

conformers of the butanediols we return to explicit consideration of 13BD. Our calculated 

properties for the quasi-degenerate conformers I and II and for the next most stable 

conformer, III, which is >2 kJ mol
-1

 higher in energy, are summarized in Table S2. FTIR 

measurements
[10]

 on an annealed, cold 10K matrix isolated 13BD found that the population 

collapsed to a 1:1 mix of the two thermodynamically most stable conformers. 

Correspondingly, an equally weighted preponderance of conformers I and II was inferred in a 

pulsed jet FT microwave experiment.
[11]

 It can thus be expected that under the cold molecular 

beam conditions of our PECD experiment an approximately 1:1 mixture of conformers I and 

II will be obtained.   

The lower panel of Figure 5 compares the predicted PECD for 13(R-)BD conformers I – III 

and experiment. Individually, none of the 13BD conformers provides a good match with the 

jet-cooled experimental data. In particular, the magnitude of the experimental 

𝑏1
{+1}

parameters is less than that of the calculated single conformer PECD curves. However, 

the  anticipated 1:1 average of the conformer I and II 𝑏1
{+1}

parameters provides  significantly 

better agreement with experiment and we may infer that it is the approximate mutual 

cancellation (i.e. the pseudo-enantiomerism) of this conformer pair responsible for an 

apparent attenuation of the PECD observed experimentally. 

It is well established that PECD measurements are sensitive to absolute configuration at one 

or more stereogenic centers.
[6]

 Although not included here, repeating the above calculations 

for true enantiomers of the various conformations (e.g. 13(R-)BD g′GG′t  13(S-)BD gG′Gt 

— see Figure1) negates all the 𝑏1
{+1}

parameter curves shown, and creates a clear disparity 

with the experimental data. Nevertheless, the calculated PECD curves for the chosen R- 

enantiomer configurations of these butanediols (Figure 5) display a striking variation with 
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assumed conformation, a sensitivity which is fully anticipated from previous PECD studies 
[6]

 

including cases where, as here, such large differences were ascribed simply to the rotational 

orientation of an OH group.
[15, 16]

 Equally, structural isomers such as camphor and fenchone 

can display very different PECD response even when sharing the same absolute 

configuration.
[17]

 In these senses the various differences between 13BD and 23BD seen here 

are not unexpected. Perhaps more surprising are the highlighted similarities between 13PD 

and 13BD.  

This pseudo-enantiomeric mirroring for 13BD I and II does, however, disappear at photon 

energies around 15 eV, nor does the experimental datum fit the calculated  1:1 mean PECD  

at this energy (Figure 5).  A full analysis of the calculations indicates this region corresponds 

to a shape resonance in the electron continuum.
[18]

  Here, it suffices to note that such 

resonances correspond to a temporary trapping of the photoelectron in the molecular vicinity. 

This allows the outgoing electron, which here we have seen is initially OH localized, an 

extended coupling to the entire molecular structure including, one may assume, the 

asymmetrically substituted  C(3) chiral center. The chiral electron dynamics observed in 

PECD generally derive from both the initial state (orbital),  and a final state scattering of the 

outgoing electron off the chiral molecular potential.
[5]

 A reasonable inference is that in the 

13BD calculated PECD, conformation induced, pseudo-enantiomerism of the initially highly 

localized HOMO provokes the dominant sensed chirality but that this is effectively 

suppressed by an enhanced influence of configurational chirality at energies around the shape 

resonance. At the same time fixed geometry calculations such as these are known to 

overemphasize such resonant effects.
[18]

 

Overall, notwithstanding the hν  15 eV region of shape resonance,  there is a clear 

implication that the conformers I and II of a given absolute configuration of 13BD constitute 

a pseudo-enantiomeric pair in which the terminal methyl group, despite strictly breaking 

mirror symmetry at the asymmetric C(3) substitution site (hence leading to R or S absolute 

configurations), is a quasi-spectator. This therefore mimics the 13PD situation. Evidently this 

conformational pseudo-enantiomerism impacts the chirally sensitive HOMO PECD to an 

extent at least comparable to the absolute configurational chirality, leading to the 

approximate mirroring in the inferred HOMO electron dynamics. 

Significantly, these findings illustrate that the effective chirality of even a relatively small 

molecule can be determined by its localized electronic structure, rather than the overall 
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geometric arrangement of atoms — which is what most definitions of molecular chirality 

reference. While it can be argued that orbital chirality must ultimately follow from a chiral 

framework, this evidently need not span the whole molecule.  In probing such localized 

electronic structure, PECD is perhaps closer than more traditional chiroptical methods (such 

as solution phase electronic absorption CD) to the many chemical processes that interrogate 

molecular chirality via localized electronic interactions. As the orbital-specific response 

revealed here demonstrates, this may entail some quite subtle considerations and 

consequently   may be an important concept for understanding how chirality operates in 

macromolecular systems built up from smaller chiral units. 

The quasi-degeneracy, and non-separability, of such isolated conformational enantiomers 

could be readily lifted in a molecular recognition event.  Imprinting of chiral information 

through relatively weak molecular interactions (such as the formation and disruption of H-

bonds, and any consequent modification of frontier orbital response) assumes a wide-ranging 

significance for understanding the many enantioselective processes encountered in life.  The 

involvement of such interactions in any chiral recognition processes with 13BD is clearly 

sufficient to induce different pseudo-enantiomeric conformations. Although the single photon 

PECD technique as applied here offers no time resolution, the new ultrafast laser based 

variants of PECD that are emerging
[19-21]

 offer a clear prospect of performing time-resolved 

pump-probe PECD  measurements capable of following the interconversion of conformers, 

and any associated chiral switching, in real time.
[6, 7]

 

 

Methods 
Experiments were performed at the Soleil synchrotron on the DESIRS beamline.

[22]
 An imaging photoionization 

spectrometer equipped with a skimmed supersonic molecular beam source was employed to measure 

photoelectron angular distributions for alternating left and right circularly polarized vacuum ultraviolet 

radiation, with 
}1{

1

b values extracted following a general methodology described previously.
[23]

 Calculations of 

the  chiral photoionization dynamics used the CMS-X method. More specific details on both experiment and 

calculation are provided as Supporting Information. 
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Figure Captions 
 

Figure 1. A comparison of the lowest energy conformers (I, II) of 1,3-propanediol and 1,3R-

butanediol. The alternative 1,3S-butanediol configuration, but retaining the same carbon C1–

C3 conformations appears in the third row while true enantiomers of I and II appear in the 

bottom rows.  

Figure 2. Calculated photoionization cross section, , anisotropy parameter, β, and chiral 

𝑏1
{+1}

 parameter for the HOMO of the 1,3R-butanediol quasi-degenerate  conformers I and II 

(solid lines) compared with corresponding conformers of 1,3- propanediol (dashed lines). For 

 and β the two 1,3-propanediol conformers (conformational enantiomers)  provide 

indistinguishable results and so only one is plotted.  

Figure 3.  Hartree-Fock HOMO  orbitals for conformers I, II  of (a)  1,3-propane diol and (b) 

1,3R-butanediol. 

Figure 4.  Lowest energy conformers of 2R,3R- butanediol. I is most stable by at least 1.4 kJ 

mol
-1

. 

Figure 5. HOMO electron chiral 𝑏1
{+1}

 parameters for 2R,3R-butanediol (top) and 1,3R-

butanediol (bottom).  Calculations made at fixed, equilibrium geometry for the low energy 

conformers I – III  are shown as solid curves. 100 K Boltzmann population weighted  

averages (calculated using data from Tables S1, S2) and, for 13BD, a 1:1 mean of conformers 

I and II appear as broken lines. Jet-cooled experimental values, formed as averages taken 

across the HOMO band profile at each photon energy,  are included for comparison, the error 

bars indicating uncertainty due to the counting statistics.   
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Fig 1 (grayscale) (low res eps preview) 
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Fig. 2  
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Fig 4.  (grayscale)  
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TOC: 

 

 

While methyl substitution at a terminal carbon of 1,3 propanediol creates a new stereogenic centre, 

and  hence permanent  R- and S- configurational enantiomers of  1,3 butanediol, the HOMO electron 

dynamics are predicted to continue displaying marked conformational pseudo-enantiomerism 

analogous to the transient conformational chirality in 1,3 propanediol. 

 

 

 
 


