36 research outputs found

    Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Get PDF
    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.This work was funded by the Ministerio Español de Ciencia e Innovación (CGL2011–23681 and CGL2015-67682-R), and Campus de Excelencia Internacional del Mar (CeiMar). M.J.C. and J.M.G.-O. were supported by the Spanish Government Fellowship “Formación de Profesorado Universitario” (FPU12/01243 and FPU14/00977, respectively)

    The human connection: First evidence of microplastics in remote high mountain lakes of Sierra Nevada, Spain

    Get PDF
    Data availability Data will be made available on request.Acknowledgements We would like to thank the support of all the citizen volunteers without which this work would not have been possible. We are extremely grateful to the colleagues of the Ecology Department Carmen Pérez, Eloisa Ramos, Jesús Manuel López-Rodríguez and José Antonio Delgado for leading the multidisciplinary research groups. We are indebted to the contribution of Joana Llodrá for lake basins estimations. Dr. Bopaiah Biddanda is acknowledge for his thorough suggestions. We are also grateful to the staff of Sierra Nevada National Park and the Global Change Observatory of Sierra Nevada who have always supported the “74 High Mountain Glacial-Lake Oases” Citizen Science initiative. This research has been funded by a FECYT grant to MVA (FCT- 18-13095), the LifeWatch-ERIC project “Smart EcoMountains” (LifeWatch- 2019-10-832 UGR-01), a FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades project (P20_00105), and by the Ministerio de Ciencia e Innovación project “REMOLADOX” (PID 2020-118872RB-I00). Funding for open access charge: Universidad de Granada / CBUA.Microplastics have become one of the most serious global threats to animal and human health. While their presence has been documented in all Earth water ecosystems, including remote mountain lakes, the observation that the abundance of microplastics is largely different across nearby lakes has rarely been examined. As part of a citizen science initiative, this study analyzed for the first time the abundance of microplastics in the surface of 35 glacial lakes of Sierra Nevada National Park in Southern Spain with the objective of determining the local factors that control their abundance. First, we described the shape, size, color and nature of microplastics. Second, we tested whether the number of microplastics differed between basins and analyzed environmental and morphometrical features of lakes affecting their abundance. We found that microplastics were common in most lakes, with a maximum abundance of 21.3 particles per liter that akin to some of the most microplastic polluted lakes worldwide. Fragments were the predominant shape (59.7%) followed by fibers (38.8%) and very scarce spheres (1.5%). Microplastics were observed for all size-fractions, but the abundance of particles <45 μm was higher, what advocates for the use of low pore-size filters to prevent underestimation of microplastics. While the mean abundance of microplastics did not differ among basins, their quantity was related to the presence of meadows surrounding the lakes. This result indicates that while atmospheric transport of microsplastics may equally reach all basins, differences in microplastics among nearby-lakes has an anthropic origin caused by mountaineers who find lakes with ample meadows much more attractive to visit relative to barren lakes. The staggering number in these remote lakes, headwaters of rivers that feed drinking reservoirs, is a major concern that warrants further investigation and the strict compliance with waste management laws to reduce the harmful impacts of microplastic contamination.FECYT grant to MVA (FCT- 18-13095)LifeWatch-ERIC project “Smart EcoMountains” (LifeWatch- 2019-10-832 UGR-01)FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades project (P20_00105)Ministerio de Ciencia e Innovación project “REMOLADOX” (PID 2020-118872RB-I00)Funding for open access charge: Universidad de Granada / CBU

    Warming and CO2 effects under oligotrophication on temperate phytoplankton 2 communities

    Get PDF
    Eutrophication, global warming, and rising carbon dioxide (CO2) levels are the three most prevalent pressures impacting the biosphere. Despite their individual effects are well-known, it remains untested how oligotrophication (i.e. nutrients reduction) can alter the planktonic community responses to warming and elevated CO2 levels. Here, we performed an indoor mesocosm experiment to investigate the warming×CO2 interaction under a nutrient reduction scenario (40%) mediated by an in-lake management strategy (i.e. addition of a commercial solid-phase phosphorus sorbent - Phoslock®) on a natural freshwater plankton community. Biomass production increased under warming×CO2 relative to present-day conditions; however, a Phoslock® -mediated oligotrophication reduced such values by 30-70%. Conversely, the warming×CO2×oligotrophication interaction stimulated the photosynthesis by 20% compared to ambient nutrient conditions, and matched with higher resource use efficiency (RUE) and nutrient demand. Surprisingly, at a group level, we found that the multi-stressors scenario increased the photosynthesis in eukaryotes by 25%, but greatly impaired in cyanobacteria (ca. -25%). This higher cyanobacterial sensitivity was coupled with a reduced light harvesting efficiency and compensation point. Since Phoslock® -induced oligotrophication unmasked a strong negative warming×CO2 effect on cyanobacteria, it becomes crucial to understand how the interplay between climate change and nutrient abatement actions may alter the, ecosystems functioning. With an integrative understanding of these processes, policy makers will design more appropriate management strategies to improve the ecological status of aquatic ecosystems without compromising their ecological attributes and functioning

    Warming and CO2 effects under oligotrophication on temperate phytoplankton 2 communities

    Get PDF
    Eutrophication, global warming, and rising carbon dioxide (CO2) levels are the three most prevalent pressures impacting the biosphere. Despite their individual effects are well-known, it remains untested how oligotrophication (i.e. nutrients reduction) can alter the planktonic community responses to warming and elevated CO2 levels. Here, we performed an indoor mesocosm experiment to investigate the warming×CO2 interaction under a nutrient reduction scenario (40%) mediated by an in-lake management strategy (i.e. addition of a commercial solid-phase phosphorus sorbent - Phoslock®) on a natural freshwater plankton community. Biomass production increased under warming×CO2 relative to present-day conditions; however, a Phoslock® -mediated oligotrophication reduced such values by 30-70%. Conversely, the warming×CO2×oligotrophication interaction stimulated the photosynthesis by 20% compared to ambient nutrient conditions, and matched with higher resource use efficiency (RUE) and nutrient demand. Surprisingly, at a group level, we found that the multi-stressors scenario increased the photosynthesis in eukaryotes by 25%, but greatly impaired in cyanobacteria (ca. -25%). This higher cyanobacterial sensitivity was coupled with a reduced light harvesting efficiency and compensation point. Since Phoslock® -induced oligotrophication unmasked a strong negative warming×CO2 effect on cyanobacteria, it becomes crucial to understand how the interplay between climate change and nutrient abatement actions may alter the, ecosystems functioning. With an integrative understanding of these processes, policy makers will design more appropriate management strategies to improve the ecological status of aquatic ecosystems without compromising their ecological attributes and functioning

    Towards precision medicine: defining and characterizing adipose tissue dysfunction to identify early immunometabolic risk in symptom-free adults from the GEMM family study

    Get PDF
    Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic low-grade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders

    Diverse Large HIV-1 Non-subtype B Clusters Are Spreading Among Men Who Have Sex With Men in Spain

    Get PDF
    In Western Europe, the HIV-1 epidemic among men who have sex with men (MSM) is dominated by subtype B. However, recently, other genetic forms have been reported to circulate in this population, as evidenced by their grouping in clusters predominantly comprising European individuals. Here we describe four large HIV-1 non-subtype B clusters spreading among MSM in Spain. Samples were collected in 9 regions. A pol fragment was amplified from plasma RNA or blood-extracted DNA. Phylogenetic analyses were performed via maximum likelihood, including database sequences of the same genetic forms as the identified clusters. Times and locations of the most recent common ancestors (MRCA) of clusters were estimated with a Bayesian method. Five large non-subtype B clusters associated with MSM were identified. The largest one, of F1 subtype, was reported previously. The other four were of CRF02_AG (CRF02_1; n = 115) and subtypes A1 (A1_1; n = 66), F1 (F1_3; n = 36), and C (C_7; n = 17). Most individuals belonging to them had been diagnosed of HIV-1 infection in the last 10 years. Each cluster comprised viruses from 3 to 8 Spanish regions and also comprised or was related to viruses from other countries: CRF02_1 comprised a Japanese subcluster and viruses from 8 other countries from Western Europe, Asia, and South America; A1_1 comprised viruses from Portugal, United Kingom, and United States, and was related to the A1 strain circulating in Greece, Albania and Cyprus; F1_3 was related to viruses from Romania; and C_7 comprised viruses from Portugal and was related to a virus from Mozambique. A subcluster within CRF02_1 was associated with heterosexual transmission. Near full-length genomes of each cluster were of uniform genetic form. Times of MRCAs of CRF02_1, A1_1, F1_3, and C_7 were estimated around 1986, 1989, 2013, and 1983, respectively. MRCA locations for CRF02_1 and A1_1 were uncertain (however initial expansions in Spain in Madrid and Vigo, respectively, were estimated) and were most probable in Bilbao, Spain, for F1_3 and Portugal for C_7. These results show that the HIV-1 epidemic among MSM in Spain is becoming increasingly diverse through the expansion of diverse non-subtype B clusters, comprising or related to viruses circulating in other countries

    ¿Qué queda de mí?

    Get PDF
    Este libro es una reclamación a quienes hemos sido, somos o seremos docentes. A quienes no hemos respetado a las personas que se han puesto junto a nosotros y nosotras, confiando su bien más preciado: la libertad. Estas páginas denuncian cada vez que convertimos una visión en la visión, una emoción en la emoción, un saber en el saber, un comportamiento en el comportamiento. Es un grito contra la imposición, la normalización, la neutralización y la universalización de una perspectiva particular. Una pugna contra cada proceso que no se ha conectado con las vidas de los aprendices. Un texto colaborativo realizado por alumnado de Educación y Cambio Social en el Grado en Educación Infantil de la Universidad de Málaga y coordinado por Ignacio Calderón Almendros

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Phytoplankton facing global change: Ecological and physiological perspectives

    No full text
    The global change induced by human action is the result of the interaction of multiple abiotic factors. Today, a crucial field of research concerns the study of how ecosystems will respond to future environmental conditions, since global-change factors interact synergistically or antagonistically and can aggravate or mitigate the effects of this phenomenon. In this thesis, an analysis is undertaken concerning the alteration of three abiotic factors associated with the current climatic crisis (temperature increase; greater UV radiation-exposure and increase in nutrient concentration) and the impact on phytoplanktonic organisms, located at the base of aquatic trophic webs, from a physiological and ecological perspective. The connection between these two aspects has scarcely been studied, despite that an understanding of physiological responses is necessary to understand ecological dynamics. Furthermore, this thesis focuses on photosynthetic microorganisms that have phagotrophic ability within the same cell (i.e. mixotrophic protists). In recent decades, this metabolic capacity has been discovered to be widespread among phytoplankton groups. Therefore, it becomes critical to determine how mixotrophic cells might respond to global-change factors, regulating their metabolism towards autotrophy or heterotrophy, as well as to examine the implications for the energy and nutrient fluxes. This thesis is designed to help fill these information gaps carrying out experiments and observational studies over different time scales (from hours to years); at different levels of biological organization (from the cell to ecosystems); and with organisms from different environments (natural marine samples, freshwater and laboratory cultures).Tesis Univ. Granada.Ministerio de Economía y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (FEDER) (CGL2011-23681/BOS and CGL2015-67682-R)Junta de Andalucía (Excelencia projects P12-RNM-327)The Czech Science Foundation, Grantová Agentura České Republiky (GAČR 16-16343S

    Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress

    Get PDF
    Who’s cooking, who’s cleaning, and who’s got the remote control within the waters blanketing Earth? Anatomically tiny, numerically dominant microbes are the crucial “homemakers” of the watery household. Phytoplankton’s culinary abilities enable them to create food by absorbing sunlight to fix carbon and release oxygen, making microbial autotrophs top-chefs in the aquatic kitchen. However, they are not the only bioengineers that balance this complex household. Ubiquitous heterotrophic microbes including prokaryotic bacteria and archaea (both “bacteria” henceforth), eukaryotic protists, and viruses, recycle organic matter and make inorganic nutrients available to primary producers. Grazing protists compete with viruses for bacterial biomass, whereas mixotrophic protists produce new organic matter as well as consume microbial biomass. When viruses press remote-control buttons, by modifying host genomes or lysing them, the outcome can reverberate throughout the microbial community and beyond. Despite recognition of the vital role of microbes in biosphere housekeeping, impacts of anthropogenic stressors and climate change on their biodiversity, evolution, and ecological function remain poorly understood. How trillions of the smallest organisms in Earth’s largest ecosystem respond will be hugely consequential. By making the study of ecology personal, the “housekeeping” perspective can provide better insights into changing ecosystem structure and function at all scales.National Science Foundation (NSF) EAR1637093 OCE 2346958National Aeronautics and Space Administration-Michigan Space Grant Consortium Graduate Fellowships NNX15AJ20HSpanish Government FEDER-CGL2015-67682-RFondo Europeo de Desarrollo Regional Project FEDER-CGL2015-67682-RJunta de Andalucía P12-RNM 327Spanish Government Fellowship "Formacion de Profesorado Universitario" Grant FPU14/0097
    corecore