302 research outputs found

    Transformative Geomorphic Research Using Laboratory Experimentation

    Get PDF
    Laboratory experiments in geomorphology is the theme of the 46th annual Binghamton Geomorphology Symposium (BGS). While geomorphic research historically has been dominated by field-based endeavors, laboratory experimentation has emerged as an important methodological approach to study these phenomena, employed primarily to address issues related to scale and the analytical treatment of the geomorphic processes. It is contended here that geomorphic laboratory experiments have resulted in transformative research. Several examples drawn from the fluvial and aeolian research communities are offered as testament to this belief, and these select transformative endeavors often share very similar attributes. The 46th BGS will focus on eight broad themes within laboratory experimentation, and a strong and diverse group of scientists have been assembled to speak authoritatively on these topics, featuring several high-profile projects worldwide. This special issue of the journal Geomorphology represents a collection of the papers written in support of this symposium

    Evaporative sodium salt crust development and its wind tunnel derived transport dynamics under variable climatic conditions

    Get PDF
    Playas (or ephemeral lakes) can be significant sources of dust, but they are typically covered by salt crusts of variable mineralogy and these introduce uncertainty into dust emission predictions. Despite the importance of crust mineralogy to emission potential, little is known about (i) the effect of short-term changes in temperature and relative humidity on the erodibility of these crusts, and (ii) the influence of crust degradation and mineralogy on wind speed threshold for dust emission. Our understanding of systems where emission is not driven by impacts from saltators is particularly poor. This paper describes a wind tunnel study in which dust emission in the absence of saltating particles was measured for a suite of climatic conditions and salt crust types commonly found on Sua Pan, Botswana. The crusts were found to be non-emissive under climate conditions characteristic of dawn and early morning, as compared to hot and dry daytime conditions when the wind speed threshold for dust emission appears to be highly variable, depending upon salt crust physicochemistry. Significantly, sodium sulphate rich crusts were found to be more emissive than crusts formed from sodium chloride, while degraded versions of both crusts had a lower emission threshold than fresh, continuous crusts. The results from this study are in agreement with in-situ field measurements and confirm that dust emission from salt crusted surfaces can occur without saltation, although the vertical fluxes are orders of magnitude lower (∼10 μg/m/s) than for aeolian systems where entrainment is driven by particle impact

    Constant stress layer characteristics in simulated stratified air flows: Implications for aeolian transport

    Get PDF
    Varying thermal atmospheric stability conditions and their effects on shearing flows has long been a subject of interest for researchers working in atmospheric science. The development of new instrument technologies now offers an opportunity to study flows with high spatial and temporal resolutions in wind tunnel atmospheric boundary layers. In the presented study, we use a laser Doppler anemometer within the Trent Environmental Wind Tunnel Laboratory to investigate the influence of thermal stratification on the constant stress layer. Analyses of the thermal stratification represented by the gradient Richardson number and the apparent von Kármán parameter, shear velocity, and the slope of the streamwise velocity profiles reveal strong linear relationships. An exponential relationship between thermal stability and the apparent roughness length is also revealed. Profiles of the streamwise and vertical velocity and turbulence intensity, as well as the dimensionless Reynolds stress, are influenced by the gradient Richardson number. These findings have implications for producing accurate models of sediment entrainment and transport by wind in non-neutral conditions

    A continuous record of Holocene eolian activity in West Greenland

    No full text
    Eolian landforms are widespread alongside proglacial valley-sandurs in West Greenland and comprise low-relief sand sheets, climbing dunes, and upland loess. Sedimentary facies mainly reflect distance to outwash-source zones and the influence of vegetation cover. The sediments show stratification types typical for poorly to moderately vegetated sand-sheets, alternately laminated silt/peat sequences, and unstratified loess. Twenty-five accelerator mass spectrometry 14C dates provide the basis for the chronostratigraphy of the inland eolian deposits. 14C dates from interstratified sand-sheets suggest that the bulk of eolian sands were deposited prior to 3400 cal yr B.P. and after 550 cal yr B.P. This two-phase formation for the inland dunes most likely reflects local changes in proglacial floodplain development and meltwater rerouting associated with a significant recession of the Greenland ice sheet during the mid Holocene climate optimum. Subsequent floodplain regeneration and renewed sand-sheet formation after 550 cal yr B.P. followed when the ice margin readvanced to its present position. In contrast, atmospheric deposition of regionally derived silt in upland peat mires has been continuous since at least 4750 cal yr B.P. Silt influx data demonstrate a strongly episodic history of the intensity of eolian activity over the past five millennia, which tentatively reflects alternating periods of (winter) aridity associated with the variable incursion of maritime air masses over the interior ice-free areas of West Greenland

    Linear stability analysis of transverse dunes

    Get PDF
    Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.Comment: 8 pages, 4 figure

    Field evidence for the upwind velocity shift at the crest of low dunes

    Full text link
    Wind topographically forced by hills and sand dunes accelerates on the upwind (stoss) slopes and reduces on the downwind (lee) slopes. This secondary wind regime, however, possesses a subtle effect, reported here for the first time from field measurements of near-surface wind velocity over a low dune: the wind velocity close to the surface reaches its maximum upwind of the crest. Our field-measured data show that this upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first order closures. This effect, together with sand transport spatial relaxation, is at the origin of the mechanisms of dune initiation, instability and growth.Comment: 13 pages, 6 figures. Version accepted for publication in Boundary-Layer Meteorolog

    Scale-dependent perspectives on the geomorphology and evolution of beachdune systems

    Get PDF
    Despite widespread recognition that landforms are complex Earth systems with process-response linkages that span temporal scales from seconds to millennia and spatial scales from sand grains to landscapes, research that integrates knowledge across these scales is fairly uncommon. As a result, understanding of geomorphic systems is often scale-constrained due to a host of methodological, logistical, and theoretical factors that limit the scope of how Earth scientists study landforms and broader landscapes. This paper reviews recent advances in understanding of the geomorphology of beach-dune systems derived from over a decade of collaborative research from Prince Edward Island (PEI), Canada. A comprehensive summary of key findings is provided from short-term experiments embedded within a decade-long monitoring program and a multi-decadal reconstruction of coastal landscape change. Specific attention is paid to the challenges of scale integration and the contextual limitations research at specific spatial and/or temporal scales imposes. A conceptual framework is presented that integrates across key scales of investigation in geomorphology and is grounded in classic ideas in Earth surface sciences on the effectiveness of formative events at different scales. The paper uses this framework to organize the review of this body of research in a 'scale aware' way and, thereby, identifies many new advances in knowledge on the form and function of subaerial beach-dune systems. Finally, the paper offers a synopsis of how greater understanding of the complexities at different scales can be used to inform the development of predictive models, especially those at a temporal scale of decades to centuries, which are most relevant to coastal management issues. Models at this (landform) scale require an understanding of controls that exist at both ‘landscape’ and ‘plot’ scales. Landscape scale controls such as sea level change, regional climate, and the underlying geologic framework essentially provide bounding conditions for independent variables such as winds, waves, water levels, and littoral sediment supply. Similarly, an holistic understanding of the range of processes, feedbacks, and linkages at the finer plot scale is required to inform and verify the assumptions that underly the physical modelling of beach-dune interaction at the landform scale

    Sediment Budget Controls on Foredune Height: Comparing Simulation Model Results with Field Data

    Get PDF
    The form, height and volume of coastal foredunes reflects the long-term interaction of a suite of nearshore and aeolian processes that control the amount of sand delivered to the foredune from the beach versus the amount removed or carried inland. In this paper, the morphological evolution of foredune profiles from Greenwich Dunes, Prince Edward Island over a period of 80 years is used to inform the development of a simple computer model that simulates foredune growth. The suggestion by others that increased steepness of the seaward slope will retard sediment supply from the beach to the foredune due to development of a flow stagnation zone in front of the foredune, hence limiting foredune growth, was examined. Our long-term data demonstrate that sediment can be transferred from the beach to the foredune, even with a steep foredune stoss slope, primarily because much of the sediment transfer takes place under oblique rather than onshore winds. During such conditions, the apparent aspect ratio of the dune to the oncoming flow is less steep and conditions are not favourable for the formation of a stagnation zone. The model shows that the rate of growth in foredune height varies as a function of sediment input from the beach and erosion due to storm events, as expected, but it also demonstrates that the rate of growth in foredune height per unit volume increase will decrease over time, which gives the perception of an equilibrium height having been reached asymptotically. As the foredune grows in size, an increasing volume of sediment is needed to yield a unit increase in height, therefore the apparent growth rate appears to slo
    corecore