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Abstract 

The form, height and volume of coastal foredunes reflects the long-term interaction 

of a suite of nearshore and aeolian processes that control the amount of sand 

delivered to the foredune from the beach versus the amount removed  or carried 

inland. In this paper, the morphological evolution of more than six decades is used to 

inform the development of a simple computer model that simulates foredune growth. 

The suggestion by others that increased steepness of the seaward slope will retard 

sediment supply from the beach to the foredune due to development of a flow 

stagnation zone in front of the foredune, hence limiting foredune growth, was 

examined.  Our long-term data demonstrate that sediment can be transferred from 

the beach to the foredune, even with a steep foredune stoss slope, primarily 

because much of the sediment transfer takes place under oblique rather than 

onshore winds. During such conditions, the apparent aspect ratio of the dune to the 

oncoming flow is less steep and conditions are not as favourable for the formation of 

a stagnation zone. The model shows that the rate of growth in foredune height varies 

as a function of sediment input from the beach and erosion due to storm events, as 

expected, but it also demonstrates that the rate of growth in foredune height per unit 

volume increase will decrease over time, which gives the perception of an 

equilibrium height having been reached asymptotically.  As the foredune grows in 

size, an increasing volume of sediment is needed to yield a unit increase in height, 

therefore the apparent growth rate appears to slow.  

Keywords: Foredune evolution; beach/dune interaction; computer simulation; limits 

to foredune height   
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Introduction 

Coastal foredunes form where sand transported landward from the foreshore by 

wind is deposited on the backshore, usually within vegetation that has established 

above the high-water line. Growth of the foredune over time is controlled by the 

relative rates of sediment supply from the beach by wind action and removal from 

the foredune toe due to storm wave action (Davidson-Arnott and Law, 1990, 1996; 

Hesp, 2002). A sediment mass balance approach therefore provides the mechanism 

by which dynamic changes in the height and width of the foredune can be 

determined. On a decadal scale, these changes are of interest to coastal scientists 

because they are diagnostic of the coastal nearshore context in which the foredunes 

evolve (Bauer and Sherman, 1999; Walker et al., 2017), but also because of the role 

played by foredunes in providing protection to the area landward of the foredune 

from erosion and flooding from storm events. There is now considerable interest in 

enhancing understanding of the controls on foredune growth and using these 

insights to improve morphological models that can be used to test ideas about 

foredune evolution (Baas and Nield, 2007; Durán and Moore, 2013; Hounhout and 

de Vries, 2016), to predict the vulnerability of natural dunes to scarping and 

overwash during storms (Claudino-Sales et al., 2008; Brodie et al., 2017), to assess 

the impact of invasive species such as non-native marram grass (e.g., Hilton et al., 

2005), and to improve the management and restoration of protective dune systems 

in developed settings (Elko et al., 2016). While sediment budget approaches are 

conceptually simple, it has long been recognised that the actual controls on sediment 

supply to and from the foredune are numerous and complex (de Vries et al., 2014; 

Walker et al., 2017). Conceptual models of foredune evolution have sought to relate 

morphological response to gradients in specific controls such as sediment supply 
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and littoral drift (Psuty, 1988, 2004; Davidson-Arnott and Law, 1990; Miot da Silva 

and Hesp, 2010; Heathfield and Walker, 2015), beach morphodynamics (Short and 

Hesp, 1982; Sherman and Lyons, 1994; Hesp and Smyth, 2016), storm frequency 

and magnitude (Sallenger, 2000; Houser and Hamilton, 2009; Splinter and Palmsten, 

2012), vegetation type and cover (Hesp, 1991, 2002; Hilton et al., 2005; Baas and 

Nield, 2007; Darke et al., 2016), and changes in sea level (Olson, 1958; Sherman 

and Bauer, 1993; Davidson-Arnott, 2005).  An increasing number of computer 

simulation models have been proposed that incorporate some of these controls, but 

typically they focus on equilibrium transport systems and the feedback that the 

evolving morphology exerts on the wind and transport dynamics (e.g., Andreotti, 

2004; Durán and Moore, 2013; Goldstein and Moore, 2016). 

In this paper we explore the way in which the sediment budget of a coastal foredune 

will control the morphological evolution, specifically dune height and width. 

Ultimately, we aim to assess whether there is an equilibrium limit to the height of a 

foredune, as proposed by Durán and Moore (2013). A data set showing the evolution 

of foredune profiles at Greenwich Dunes, Prince Edward Island, Canada over a 

period of more than six decades, based on photographic records, is integrated with 

recent field measurements of profile change spanning almost two decades 

(Ollerhead et al., 2013) to inform the development of a simple 2-D morphodynamic 

model. Annual sediment inputs by aeolian transport from the beach and losses 

generated by wave erosion during storm events are simulated.  The model is used to 

explore the effects of varying sediment input and varying storm frequency and 

magnitude on the growth of a simple triangular foredune over many decades. The 

validity of the model assumptions and results of the modelling exercise are examined 

in light of the field measurements of profile morphodynamics and of key controlling 
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processes, in order to assess the temporal evolution of foredune profiles and the 

limits, if any, to the growth in foredune height and width. This is followed by a 

comparison of the results of our modelling exercise with the model of Durán and 

Moore (2013).  

 

Conceptual Background 

The simplest sediment budget approach for modelling dune growth is based on the 

aeolian sand drift potential proposed by Fryberger and Dean (1979) for desert 

environments, with the assumption that all sediment delivered to the dune is 

deposited in the dune.  Following this approach, the sediment supply to coastal 

foredunes has been predicted using hourly mean wind speed as the primary variable 

driving one or more aeolian sediment transport models (Chapman, 1990; Davidson-

Arnott and Law, 1990, 1996; Miot da Silva and Hesp, 2010). However, in the coastal 

zone many factors limit the actual sediment supply, including moisture, fetch 

distance, lag gravels and shells, snow and ice, and textural variations (e.g., Carter, 

1976; Nickling and Davidson-Arnott, 1990; Bauer and Davidson-Arnott 2003; 

Delgado-Fernandez, 2010; Hoonhout and de Vries, 2016). In addition, spatial and 

temporal variations in the morphology of the inner nearshore and foreshore zones 

affect the potential sediment supply to the aeolian system and the protection 

provided by foredune to the secondary backdunes or critical human infrastructure 

(Aagaard et al., 2004; Houser, 2009; Bochev-van der Burgh et al., 2011; Walker et 

al., 2017).  Several researchers have sought to isolate the role of a small number of 

controls and to investigate the possible limits that they impose on the evolution of the 

foredune and dune field complexes (e.g., Short and Hesp, 1982; Bauer and 
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Davidson-Arnott, 2003; Baas and Nield, 2007, Durán and Moore, 2013; Goldstein 

and Moore, 2016). Models have also been developed to predict the extent of dune 

erosion due to wave run-up during individual storm events (e.g.,  Kriebel and Dean, 

1993; Roelvink et al., 2009; Houser and Mathew, 2011; Splinter and Palmsten, 2012; 

Amaroli et al., 2013; Dissanayake et al., 2014; de Winter et al., 2015; Castelle et al., 

2017; Berard et al., 2017).  

Within the range of morphological models of beach/dune interaction and foredune 

growth, a group of models can be identified wherein the primary objective is to 

reproduce, as far as possible, the complexities of the major controls on sediment 

erosion, transport and deposition and to enable real world prediction (e.g., van Dijk 

et al., 1999; Roelvink et al., 2009; Hounhout and de Vries, 2016; Berard et al., 2017). 

The primary aim of another group of morphological models is to isolate the effects of 

one or more key variables using a number of simplifying assumptions (e.g., Andreotti 

et al, 2010; Baas and Nield, 2007; Durán and Moore, 2013; Keijsers et al., 2016). 

These exploratory models serve a useful function because the simplifying 

assumptions allow for the exploration of morphodynamic reactions across time 

and/or the full range of the variables, thus permitting the identification of end member 

states as well as the potential for some form of morphodynamic equilibrium response 

(e.g., Sutherland et al., 2004; Zhou et al., 2017). However, as Zhou et al. (2017, p. 

259) note, the virtual world of computer models may allow for the development of 

morphodynamic equilibria that may not exist in the complex world of natural systems.  

Zhou et al. (2017) focus on assessing morphodynamic equilibrium in terms of 

sediment flux equilibria which can be expressed using a form of the Exner equation 

(Paola and Voller, 2005; Bauer et al., 2015):  
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(1 − 𝜌)
𝜕𝜂

𝜕𝑡
+ ∇. qs = σ 

where ƞ is elevation of the bed, t is time, ρ is sediment porosity, qs is sediment 

(volume) flux, and σ is an undefined sediment source or sink. Using this approach, 

they recognise three forms of morphodynamic equilibrium. First, static equilibrium 

occurs where there is no import or export of sediment and qs and σ are both 0, thus 

there can be no morphologic change.  Next, there are two forms of dynamic 

equilibrium.  Type I dynamic equilibrium occurs where qs ≠0,  ∇.qs = σ and σ = 

constant. If σ = 0, then the sediment flux divergence must also be zero, which also 

implies no net morphologic change.  Note, however, that sediment transport is active 

in this situation, but there is no spatial difference in transport rate.  If σ≠0, the 

sediment flux divergence is balanced by some constant source/sink term such as 

sediment consolidation or tectonic uplift (Zhou et al. 2017, p.260). Type II dynamic 

equilibrium is defined by qs ≠0 , ∇.qs = σ(t) and σ(t) is a function of time.  This type of 

equilibrium is the most complex to model, although it is likely the most realistic when 

considering long time frames. The response of the beach and dune profile on a 

sandy beach to relative sea-level fluctuations (driven by a combination of eustatic 

and regional tectonic interactions) illustrates one form of this where the profile is 

translated  transgressively through time (Bruun, 1962; Davidson-Arnott, 2005).   

In the virtual world of morphodynamic models, especially exploratory models, 

equilibrium conditions are frequently invoked to make the numerical simulations 

viable. However, as Zhou et al. (2017) point out, in the real world, “variability in the 

environmental drivers and landscape settings often precludes the system from 

reaching an equilibrium condition” (p. 265). Therefore, it is critical to assess the 

results of computer models in light of our understanding of real world dynamics and 
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to test the degree to which the identification of key controls and the assumptions 

behind the model development are sound. 

Study Area and Methodology 

Greenwich Dunes field site 

Greenwich Dunes is situated on the NE coast of Prince Edward Island, Canada, and 

is part of Prince Edward Island National Park, facing the Gulf of St. Lawrence (Figure 

1a, b). Prevailing winds are from the SW and W, but dominant storm winds resulting 

from the passage of mid-latitude cyclones are from the NW, N and NE blowing over 

fetches that exceed 300 km. These storms typically generate waves with a 

significant wave height of 3-7 m and storm surge of up to 2 m (Manson et al., 2015). 

Tides are mixed semi-diurnal with a spring tidal range of 1.1 m. Sea level is rising at 

a rate of about 0.25-0.3 m per century (Scott et al., 1981; Forbes et al., 2004). 

The study area includes about 5 km of the exposed north-facing shoreline stretching 

eastward from the entrance to the St. Peters estuary to just beyond the Park 

boundary (Figure 1c, d). The shoreline is characterised by a sandy nearshore and 

beach, which are backed by a continuous foredune ranging in height from 4-12 

metres with the sand deposit extending offshore as a wedge overlying sandstone 

bedrock (Forbes et al., 2004; Walker et al., 2017). Bedrock outcrops about 300-500 

m offshore and locally is close to the surface near the beach in a few areas. Net 

littoral drift is from east to west. The shoreline is divided into two reaches based on 

observed sediment budget dynamics (Figure 1d). Reach 1 is about 2 km long and 

has a net negative littoral sediment budget. The beach here is 20-40 m wide, the 

foredune ranges from 4-10 m in height, and the shoreline is retreating at an average 

rate of about 0.5 ma-1. In Reach 2 the littoral budget transitions from slightly negative 
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at the updrift end near Line 5 to neutral or slightly positive at the estuary entrance. 

The beach is generally 35-50 m wide. The foredune ranges from 6-11 m in height 

and its position is essentially stable over the western two kilometres (Ollerhead et al., 

2013).  

Long-term Foredune Evolution 

An intense storm on October 1, 1923 affected much of the NE coast of PEI leading 

to the complete erosion (i.e., removal) of the foredune within the study area and 

elsewhere along the coast (Simmons, 1982; Mathew et al., 2010). Interpretation of 

the remnant morphology evident in the historical aerial photographs suggests that 

erosion of the foredune was likely in response to an extreme storm surge that led to 

inundation overwash (Sallenger, 2000; Morton, 2002; Donelly et al., 2006). Re-

establishment of the foredune took many decades because of the almost complete 

removal of pioneering dune species, especially marram grass (Ammophila 

breviligulata), along the whole shoreline (Mathew et al., 2010). Aerial photographs 

from 1936 show the shoreline still consisting of overwash flats and fans and small, 

mobile transgressive dunes. By 1953 foredunes had established at the back of the 

beach over large sections of the shoreline, and by 1971 a continuous foredune was 

in place (Mathew et al., 2010).  Of critical importance for this study is that the exact 

age of the various stages of foredune growth is known because the beach-dune 

system was completely removed by the 1923 storm. The subsequent development 

and evolution of the foredune since 1936 is easily reconstructed through the aerial 

photography. 

Methodology 
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In 2002, eight profile lines were established along reaches 1 and 2 (Ollerhead et al., 

2013 – see Figure 1d). The profiles were surveyed annually between 2002 and 2011 

and again in 2016, and a complete photographic record was taken for both the 

cross-shore and alongshore directions.  Deposition along the profiles was measured 

seasonally between 2002 and 2008 together with vegetation height and density 

(Ollerhead et al., 2013). Additional insight into the evolution of the foredune system 

was obtained from orthorectified mosaics and DEMs constructed from vertical aerial 

photography taken in 1936, 1953, 1971 and1997 (Mathew et al., 2010), which  

permitted extraction of topographic data for profiles 4-9 (Figure 1d). Field 

experiments designed to measure the controls on aeolian sediment transport on the 

beach and foredune were carried out in 2002, 2004, 2007 and 2010 in the vicinity of 

profile 7 (e.g., Hesp et al., 2005; Davidson-Arnott et al., 2008; Bauer et al., 2009, 

2012; Walker et al., 2017) and continuous monitoring using a remote camera system 

was carried out from September, 2007 to May, 2008 (Delgado-Fernandez et al., 

2010, Delgado-Fernandez, 2011). The field research provides insights into the 

foredune sediment budget, including the mechanisms and volumes of the transfer of 

sand from the beach to the foredune, sand movement on the foredune itself, and the 

impact of foredune erosion during major storm events. The primary focus here is on 

profiles 5-8 in Reach 2 where the position of the foredune has been very stable over 

the past two decades. These data and insights are key to the development of the 

exploratory simulation model described in the next section.  

Profile Evolution 

Decadal scale evolution of the profiles is illustrated for lines 5-8 in Figure 2. No 

vegetated foredunes were evident in the 1936 air photos, 13 years after the 



 

This article is protected by copyright. All rights reserved. 

overwash event. By 1953, small, vegetated dunes had become established on the 

backshore along parts of the shoreline, and these are evident on lines 5, 6 and 7 

(Figure 2a, b, c). There were no vegetated dunes in the vicinity of Line 8 (Figure 2d). 

In 1971, vegetated foredunes were present along the whole shoreline in the study 

area, with maximum heights up to 7 m along Lines 5-7 and about 3.5 m on Line 8. 

Foredune evolution along these four lines and also Line 4 (not shown) can be 

characterised by the development of a relatively low, broad foredune in the early 

stages, sloping gently down to the backshore and with the highest point located 

some 30-60 m inland from the vegetation line. Between 1971 and 1997 the foredune 

prograded seaward and a distinct crest developed close to the beach with a steep 

stoss slope on all lines (Figure 2). A new lee slope developed, terminating on the 

older dune deposits landward. In the immediate vicinity of Line 7, the original 

foredune crest (before 1997) was about 10 m high and the seaward dune crest in 

2016 was about the same height as the older crest.  Between 1997 and 2016 the toe 

of the stoss slope of the foredune remained essentially in place along Lines 6, 7 and 

8 while there was small retreat at Line 5.  

The change in maximum height of the foredune crest over the period 1953-2016 is 

shown in Figure 3a for Lines 5-8. In 1953 there were only incipient dunes present, 

whereas by 1971, as noted above, the dune crest was established at quite some 

distance from the shoreline. By 1997 a new active foredune crest developed out of 

the low dune complex at a location much closer to the current back beach (Figure 2) 

and the crest height measurements from then on are for this location. The change in 

measurement location likely accounts for the discontinuity between 1971 and 1997 

evident in Figure 3a. At all four locations there was a substantial increase in 

foredune volume over the period 1953-1971 and then a rapid increase in dune height 
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between 1971 and 1997. On Lines 6, 7 and 8 foredune height continued to increase 

from 1997-2016 (Figure 3b) though there are indications that the rate of height 

increase was diminishing. On Line 5, where some recession of the profile occurred, 

dune height was stable to increasing slightly.  

Based on detailed profile surveys from 2002-2016, the crest position migrated slowly 

landward, ranging from 0.26 m at Line 7 to nearly 8 m at Line 5 (Figure 4, Table 1). 

This is in contrast to the long period of crest progradation beginning in 1971 after 

establishment of the foredune in the 1950s and 1960s. A major storm on December 

21, 2010 resulted in scarping of the foredune as well as a landward shift in the 

position of the toe of the stoss slope by about 4-6 m along the entire length of Reach 

2. This is evident in the 2011 profiles on all four lines (Figure 4). Subsequent 

landward movement of the crest has resulted from slumping of the over-steepened 

scarp and wind erosion of the top of the scarp, while the lower portion of the profile 

has been rebuilt by the formation of a dune ramp and the re-establishment of 

vegetation on it (Figure 5, 6).  

Mean stoss slope angles for the period 2002–2016 are about 20° and are similar for 

all four lines (Table 1). There was more variability from year to year than for the lee 

slope angles, as a result of the periodic scarping of the stoss slope during storm 

events, and this is reflected in the maximum stoss slope angle for each of the years 

of survey (Figure 5). Lee slope angles are 15-17° for Lines 6-8 but only about 8° for 

Line 5. The lee slopes are generally well vegetated (Figure 6b) and bare avalanche 

slopes are only found occasionally where a blowout has developed near the crest 

(Hesp and Walker, 2012) or when discrete lobes of sediment develop over the crest 



 

This article is protected by copyright. All rights reserved. 

during fall and winter when vegetation cover is sparse due to seasonal phenology 

(see Ollerhead et al., 2013; Fig. 9) .  

Measured mean annual sediment deposition at Greenwich Dunes over the period 

2002-08  ranged from 1.98 to 3.22 m3m-1 (Table 1) with the minimum annual value 

being slightly negative after a dune erosion event and a maximum of about 6 m3m-1 

(Ollerhead., 2013). Similar mean values were reported for foredunes located on 

Long Point spit on Lake Erie, Canada by Davidson-Arnott and Law (1996) with a 

maximum annual value of 10 m3m-1. Average annual values of about 5 m3m-1 were 

measured at Skallingen spit, Denmark with maximum deposition of about 9 m3m-1 

(Aagaard et al., 2004; Christiansen and Davidson-Arnott, 2004). 

 

Computer Model of Foredune Evolution 

Model Design 

Informed by the data set described above, a simple model of foredune evolution was 

developed and executed in an Excel spreadsheet to explore the effects of the dune 

sediment budget on foredune growth. The model uses a 2-D profile oriented normal 

to the shoreline, and therefore it ignores alongshore variability.  It is assumed that 

net sediment transfers to the foredune are balanced by littoral inputs from 

alongshore or offshore (i.e., wind and wave climates are in dynamic equilibrium so 

as to maintain the sediment balance). Further, it is assumed that there is no long-

term change in relative sea-level due to variations in eustatic, tectonic or isostatic 

setting. Under these simplifying assumptions, the upper portions of the stoss slope 

can be considered to be fixed in space and used as the reference plane to evaluate 

long-term dune evolution, Critically, however, the toe region (lower stoss slope) is 
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allowed to vary as a consequence of wave scarping events followed by sand ramp 

re-building processes that ‘heal’ the scarp.  Thus, the model constrains the most 

seaward location of the toe of the stoss slope and the mean position of the foredune 

(i.e., no net migration) while allowing temporal variations in dune form. It therefore 

reproduces the two key elements of beach/dune interaction, namely deposition by 

aeolian processes and erosion by wave action during storm events (Houser and 

Ellis, 2013). It would be straightforward to add a translation component in the model 

to simulate dune form migration, if needed, but the drivers of dune migration are not 

immediately obvious and would require an additional level of complexity that is 

unnecessary for our immediate purpose. 

The foredune is assumed to be covered by pioneering vegetation such as marram 

grass (Ammophila breviligulata) at a sufficient density to trap all the sand supplied 

from the beach such that no sand by-passes the lee slope of the foredune. Clearly, 

this assumption is not valid for unstable blowout sections leading to transgressive 

parabolic dunes in the hinterland, but it is reasonable for very stable, vegetated 

foredune systems similar to those in PEI. However, it is also assumed that 

vegetation on the stoss slope permits sediment to be transported to the dune crest 

and distributed evenly across the lee slope through one or more mechanisms such 

as seasonal phenology, which results in a reduction in plant height and density in 

winter, the existence of bare areas between vegetation clumps (Okin, 2008), and the 

building of a bare sand ramp following major wave scarping episodes (Christiansen 

and Davidson-Arnott, 2004). This assumption of transport through the vegetation but 

no sand by-passing of the foredune is essential if sediment accumulation on the lee 

slope is to be simulated.   
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For simplicity, the stoss and lee slopes are assumed to have fixed angles; 30° for the 

stoss slope and 20° for the lee slope. The lee slope is thus slightly steeper than the 

long-term average measurements for the PEI foredune (Table 1), while the stoss 

slope angle lies between the average slope and the values for the steepest slope for 

the foredune transects measured at the study site.  These are admittedly somewhat 

arbitrary choices for the model, but the fixed slope values are convenient because 

they facilitate easy calculations of the volume of sand stored in the foredune. A more 

complex model might allow for unequal deposition of sediment across the dune form, 

and hence varying slope angles, but the general outcome would be similar in terms 

of overall morphodynamic evolution of the dune form. In this regard, it should be 

noted that the model is not driven by wind but simply by sediment inputs, and 

therefore there is no feedback between the evolving form and wind acceleration or 

steering through time (Hesp et al., 2015). The initial foredune height was set at 3 m, 

which is reasonable for an established foredune and allows for the depiction of the 

triangular form.  

Net annual sediment supply from the beach by aeolian processes is held constant 

during any simulation run.A range of sediment fluxes from 1.5-10.0 m3 m-1 per year 

were simulated in different runs. These are intended to encompass most of the 

variation found in natural foredune systems world-wide, reflecting differences in 

major controlling variables such as incident winds (speed, approach angle), beach 

width, and other supply limiting variables (moisture, surface crusts, snow cover, fetch 

distance, etc.) .  

Erosional events are simulated by removing sediment from the lower stoss slope of 

the foredune for a horizontal distance landward from the toe of 2.5, 5.0 or 7.5 m 

along the base of the dune using an annual frequency of 0.09, 0.03 and 0.01, 
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respectively,  based roughly on evidence from the site. Non-erosive events therefore 

occur with a frequency of 0.87. A random number sequence is used to determine 

which type of scarping event occurs in any given year, but only one event is allowed. 

The volume of sand removed from the dune during the event is a function of the 

event magnitude (i.e., horizontal distance eroded) as well as the dune height, which 

dictates the volume of the eroded wedge. Erosion by the larger events may be less 

than the maximum possible if the dune has not yet reached the critical height or if 

there has been insufficient time between storm events to replenish the sediment 

eroded by a previous event or events. Aeolian deposition in the following year(s) is 

directed first to replacing the volume eroded from the toe region in previous year(s). 

No deposition on the dune crest or on the lee slope is possible until the stoss slope 

is fully rebuilt and the eroded volume from the previous event has been replaced. If 

the annual aeolian sediment supply is relatively small, the process of scarp infilling 

may take more than one year, while a close succession of erosional events could 

result in no increase in dune height for a decade or more. 

In order to allow exploration of foredune evolution over many decades a catastrophic 

erosional event such as that which occurred at Greenwich in 1923 is not included 

since this would reset the foredune system. All runs were ended after 400 simulation 

years, which was sufficient to evaluate random variability in the frequency and 

magnitude of erosional events.    

Model Results 

The simple, yet empirically grounded simulation model presented here, allows us to 

explore aspects of beach-dune interaction, specifically the interplay between 

sediment supply from the beach to foredune growth and the return of sediment to the 

beach through erosional storm events. Growth of a prototype foredune over the first 
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100 years is shown in Figure 7 for an annual sediment input of 5 m3 a-1.  Because of 

the assumption that the stoss slope is fixed in position and in slope angle, net 

deposition occurs only on the lee slope and crest (i.e., seaward progradation or 

landward migration are not simulated in this non-translational model). As the dune 

grows in height and volume, the length of the lee slope increases, with the result that 

a greater volume of sediment is required to produce an increment in height in 

subsequent years.  This is illustrated first for a simulation run without any wave-

scarping  events (Figure 7a), which shows decreasing thickness of the deposition 

layer as well as the gradual reduction in dune height growth for progressive decades. 

A more complex evolution is shown in Figure 7b for a simulation run that includes 

erosional events determined by random selection and weighted probabilities. This 

produces variations in the thickness of depositional layers from decade to decade 

depending on the frequency and intensity of the erosional events while maintaining 

constant sediment supply from the nearshore.  

The growth rate of the dune is determined by the relative magnitude of the erosional 

event and the net annual sediment supply (Figure 8). The change in foredune 

sediment volume and height over 400 years is shown in Figure 8a with sediment 

input set at 5 m3a-1, and with a random sequence of storm events superimposed 

over the simulation period. The annual sediment supply is greater than the volume 

eroded for the smallest event, but not so for the two larger events. Thus, it takes 

more than one year for the stoss slope volume to be replaced and deposition on the 

lee slope to resume. When the dune height is still relatively small, or when there is a 

sequence of events in close succession, there may be insufficient time to replace the 

volume eroded by previous events and so the actual erosion (shown in purple in 

Figure 8a) is less than the potential erosion (shown in green). This is a realistic 
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reproduction of what field measurements show at Greenwich Dunes as outlined 

above and shown in Ollerhead et al. (2013). 

When the annual sediment input by aeolian processes is reduced, storm events and 

dune erosion have a greater control on the transfer of sediment to the lee slope and 

thus on the increase in volume and height of the foredune. The simulations 

demonstrate that, with an input of 1.5 m3a-1 and the same erosional event regime 

used to create the dune in Figure 7b, there is very little increase in dune height over 

the 400-year period (Figure 8b). It is possible to map out combinations of sediment 

supply and event frequency and magnitude under which the growth of dune volume 

and height is effectively limited, thereby approximating a state of dynamic equilibrium 

over the short term.  

The change in foredune height in the model is dependent on the stoss and lee slope 

angles that define the volume associated with a given height. The model was 

therefore tested with a stoss slope angle of 20° and lee slope angle of 15º, values 

that are closer to the average at Greenwich Dunes. The reduced lee slope angle 

requires a larger volume increment for each unit increase in height. However, the 

reduced stoss slope angle generates erosional events that yield smaller volume 

losses and the overall magnitude of changes to dune height are very similar to those 

presented in Figure 8.  

The foredune geometry requires an increasing volume of deposition on the lee slope 

to produce a unit increment in height as the foredune grows; thus, with a constant 

sediment input, there is a corresponding increase in the time this takes (Figure 7a). 

The actual growth rate over a period of decades will also vary as a function of the 

volume of sediment input and the magnitude and frequency of the erosional events 
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(Figure 7b; 8c; 8d; Table 2). Indeed even with the same erosional event frequency, 

random variations in the timing of erosional events can produce differences of up to 

3 m in crest height in less than 100 years and these differences may persist for many 

decades (Figure 8d).   

Assuming that the maximum net sediment input in Reach 2 at Greenwich is between 

4.5 and 5 m3m-1a-1 (Table 1) the simulation model predicts that, after 60-70 years of 

growth, the foredune will develop to a height on the order of 8-10 m at a growth rate 

of about 1 m in height every 20 years. These are similar to the actual values 

measured at Greenwich for Lines 5-8. Importantly, while the model shows continuing 

growth in foredune height after 400 years, when the dune has reached a height of 

about 10 metres it takes another two decades to add an additional one metre to the 

height with a constant rate of sediment input. Thus, unless sediment supply is 

extremely large or progressively increasing, the rate of increase in foredune height 

becomes relatively small once it has attained an elevation of 10-12 metres under the 

scenario represented in the model. 

Model Assessment 

To test the validity of this simple dune growth model (as well as other more complex 

models), it is necessary to compare the simulation results to real-world data and 

identify the restricted set of conditions for which the model is valid. The focus here is 

on the general evolution of the foredune under a range of sediment inputs and 

erosional storm events, and particularly on the conditions under which some form of 

static or dynamic equilibrium might be attained. The more sophisticated model of 

Durán and Moore (2013), for example, predicts that the growth in dune height is 

limited because steepening of the stoss slope via sediment contributions from the 

nearshore causes  deceleration of wind flow at the seaward base of the foredune 
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(i.e., a flow stagnation zone). Shear stress at the dune toe is therefore reduced 

below the threshold for transport, and sand supply to the stoss slope and crest of the 

foredune is cut off.  In their model, a static equilibrium dune height Hmax is developed 

(Durán and Moore, 2013: p. 17219 and their Figure 3) due to form-flow feedback, 

whereas in our model there is no such limitation on dune height because sediment 

transport to the dune is continuous, consistent with long-term measurements at the 

Greenwich Dunes.   

Four important results can be derived from our simulation modelling.  First, with 

small sediment input annually and relatively large but infrequent storm erosion, the 

long-term sediment budget for the foredune is essentially balanced, producing a 

Type I dynamic equilibrium for which foredune heights cannot increase above the 

initial conditions.  Most of the sediment supply goes to healing the large wave-cut 

scarps that the infrequent storms produce.  Dune growth only occurs if, by random 

chance, a long series of years contains few large storms, thereby allowing the dune 

ramp to heal and sediment to be transported to the lee of the foredune.  High 

foredune crests do not develop under such sediment budget conditions. Second, if 

annual sediment inputs are greater than losses due to storm erosion on a decadal 

scale, the foredune will grow progressively in volume.  There is no limit to growth in 

foredune height under this scenario. Third, even though the simulation model treats 

the average position of the   mid-to-upper stoss slope as fixed, the position of the 

foredune crest and the lee slope can migrate landward over time as the dune grows 

in size. This is not a translational migration of dune form, but a net increase in 

foredune volume that is accommodated (in our model) by lee expansion. The 

seaward toe of the dune is able to shift depending on wave scarping and ramp 

healing events, but the most seaward position of the stoss toe (when fully healed) is 



 

This article is protected by copyright. All rights reserved. 

always fixed relative to the mean shoreline position. Fourth, the rate of increase in 

dune crest height is small once the foredune exceeds 10-12 m, within the range of 

sediment supply scenarios tested.  Thus, over periods of years to decades, a 

condition of equilibrium could be incorrectly inferred from field data, but crest height 

is in fact still increasing along with dune volume. The challenge for short-term 

monitoring projects on large dunes is that measurement uncertainty and seasonal 

fluctuations in dune volume are likely of the same order of magnitude or greater than 

the long-term dune growth signal.  

 

Discussion 

Given the simplistic nature of our model, it is reasonable to ask whether a more 

sophisticated model such as that of Durán and Moore (2013) has better predictive 

power.  Specifically, their assumption regarding an inherent limit to the sediment 

supply to the foredune--due to the reduction in wind speed and transport potential at 

the base of a steep dune--requires assessment.  As Durán and Moore (2013) show, 

this condition arises only under sustained, onshore-directed winds that are 

perpendicular to an extensive two-dimensional foredune system.  Our experience at 

Greenwich Dunes, as well as observations at many other coastal foredune systems, 

suggests that this conditions is unusual (and the assumption generally invalid) for 

two reasons.  First, flow deceleration upwind of the foredune in the Durán and Moore 

(2013) model is developed for steady flow and saturated sand transport.  Over the 

past two decades a number of studies have shown that unsteady, non-uniform flow 

conditions prevail on beach-dune systems, and that  even when a positive pressure 

gradient develops in front of the dune toe, sediment transport onto the stoss slope 
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and crest can be sustained, perhaps by the enhanced turbulence intensity (e.g., 

Wiggs et al., 1996, McKenna Neuman et al., 1997, 2000; Walker and Nickling, 2003; 

Chapman et al., 2012; Walker and Hesp, 2013; Walker et al., 2017). A time-invariant 

cessation of transport seaward of the dune toe after a critical dune steepness 

threshold or threshold in aspect ratio is reached is unusual, as has been shown on 

coastal dunes (Hesp et al., 2015) and on desert dunes (Wiggs et al., 1996; McKenna 

Neuman et al., 1997, 2000; Baddock et al., 2011; Weaver and Wiggs, 2011, Wiggs 

and Weaver, 2012). We note in passing that Durán and Moore (2013) incorrectly cite 

one of our papers (Bauer et al., 2012) as supporting their assumption of no transport 

from the beach into the dune during an onshore wind event. During the event that 

they refer to, the wind speed was consistently below the threshold for sediment 

transport across the entire beach, so sediment transport was not active at all for that 

event.    

The second, and more significant reason to question the applicability of the Durán 

and Moore (2013) model, is that a very large proportion of annual total transport into 

most foredunes takes place under oblique and alongshore winds. Under oblique 

wind approach angles, adverse pressure gradients on the windward side are not as 

pronounced, or may not exist, depending on the apparent dune aspect ratio. As a 

result, it is unlikely that there will be much, if any, significant reduction in sand 

transport onto the stoss slope (Arens, 1996, 1997; Davidson-Arnott et al., 2005; 

Hesp et al., 2015; Walker et al., 2017). While sand transport per metre alongshore is 

reduced by the cosine effect, the actual transport may be greater than for onshore 

winds because of the fetch effect on relatively narrow beaches (Arens, 1996; Bauer 

and Davidson-Arnott 2003; Delgado-Fernandez, 2010; Walker et al., 2017). 

Transport on the stoss slope is also favoured by the reduction in the apparent slope 
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effect with oblique winds. This is certainly the case at Greenwich Dunes as the data 

on deposition and the profiles in Figure 4 and Table 1 show that there is ongoing 

sediment supply from the beach to the steep, high foredunes – precisely the 

conditions that should produce no sediment delivery to the foredune stoss slope 

under the assumptions of the Durán and Moore (2013) model.  

We note that Hmax has been incorporated in two other papers that simulate foredune 

height and apparent stability regimes on barrier islands (Durán and Moore, 2015; 

Goldstein and Moore, 2016) and, thus, the results of those modelling efforts should 

be re-appraised. 

 

Conclusions 

The controls on foredune establishment and evolution in nature are highly varied and 

complex. Ultimately a comprehensive simulation model must incorporate the beach 

and foredune sediment budgets (e.g., Psuty, 1988, 2004; Arens, 1997; Bauer and 

Sherman, 1999) as well as the effects of progradation, stability, or retrogradation 

(Hesp, 2002); sea level rise or fall (Sherman and Bauer, 1993; Ruz and Hesp, 2014; 

Keisjers et al., 2016); the magnitude, frequency and sequencing of storm events 

(Sénéchal et al., 2017; Walker et al., 2017); the presence of seasonal snow and ice 

cover (Delgado-Fernandez and Davidson-Arnott, 2011; Kilibarda and Kilibarda, 

2016); the characteristics of dune vegetation, including growth form, density and 

cover, ability to withstand burial, and seasonal growth variations (e.g., Maun, 2004; 

Hesp and Hilton 2013; Zarnetske et al., 2015), and the impact of human activities 

(e.g., Jackson and Nordstrom, 2011, Kaplan et al., 2016). The challenge of utilizing 

highly simplified models such as the one presented here, as well as that of Durán 
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and Moore (2013), is to assess whether the virtual results accurately emulate real 

world processes that characterize the morphologies of interest.  

In this regard, we conclude the following: 

1) Under conditions of stable sea level and fixed position of the foredune, the data 

from our field studies at Greenwich Dunes, Prince Edward Island, coupled with the 

results of a simple simulation model show that sediment supply can be delivered 

continuously to a foredune and that the dune will increase in height and volume over 

periods of decades to hundreds of years; 

2) The concept of a natural limit to foredune height because of form-flow feedback, 

as proposed by Durán and Moore (2013), is an artefact of the assumptions in their 

model, particularly that of shore perpendicular flow against a two-dimensional 

foredune. In the real world, oblique wind approach angles are prevalent and 

sediment supply to the foredune by aeolian processes can continue indefinitely as 

long as the littoral sediment budget can supply it, and assuming that changes in 

other controls (e.g., sea level, beach progradation, vegetation cover) do not exceed 

some critical limit; 

3) Because of the complexity of the controls on foredune dynamics and evolution 

(e.g., Walker et al., 2017) it is essential that any form of static or dynamic equilibrium 

that arises within a simulation model be assessed critically against empirical 

evidence. Models are very useful in providing insights into complex processes that 

take place over long time frames or are difficult to measure due to technological 

limitations, but rarely do they yield insights into fundamentally new modes of system 

behaviour. In these instances, the range of assumptions that underpin the model 

should be evaluated to assess validity with respect to process controls at larger and 

smaller spatial-temporal scales. 
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Table 1: Morphometric properties of the foredune in Reach 2 based on profile 
measurements 2002-2016. Net change in the crest height and position are 
given for the period between 2002 and 2016. Negative values for the crest 
position indicate landward movement. Stoss and lee slope angles (degrees) 
are averaged for all the years of profile surveys from the crest to the toe of 
the slope. The maximum stoss slope angle is determined for the steepest 
portion of the stoss profile over a vertical distance of at least 2m. Average 
annual net deposition (m3m-1) between 2002-03 and 2007-08 is based on 
measurements using a bedframe at stations along each line (Ollerhead et 
al., 2013). The maximum annual net deposition is the largest annual volume 
measured.   

 

Line No. 5 6 7 8 

Crest height change 
(m) 

1.33 1.24 0.50 1.55 

Crest position change 
(m) 

-7.68 -2.00 -0.26 -1.68 

Stoss slope (°) 20.87 20.39 18.88 18.63 

Max stoss slope (°) 35.32 30.67 35.01 36.75 

Lee slope (°) 8.21 15.50 17.34 15.66 

Annual net deposition 
(m3/m) 

2.74 3.22 1.98 2.38 

Maximum net annual 
deposition (m3/m) 

4.60 4.83 4.64 6.31 
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Table 2: Values for the height (m) of the simulated foredune at three times as a 
function of the annual sediment input; and the rate of growth in height 
expressed as the number of years needed to produce an increase in height 
from 5 to 6 metres, and from 10 to 11 metres. 

 

Input (m3a-1) 1.5 2.5 5 7.5 10 

Height (m) 50 
years 

4.1 6.2 9.6 12.1 14.1 

Height (m) 100 
years 

4.4 7.3 12.8 16.5 19.5 

Height (m) 400 
years 

7.1 13.5 25 32.7 38.9 

Growth rate 
(ma-1) at 5m 

71 14 8 4 3 

Growth rate 
(ma-1) at 10m  

NA 23 17 7 5 
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Figure 1: Location of study area in Prince Edward Island (PEI), Canada showing: a) 

location of  PEI in Gulf of St. Lawrence and surrounding provinces; b) the 

Greenwich Dunes and St. Peters  Estuary area; c) vertical aerial 

photograph of Greenwich Dunes and the entrance to St. Peters Bay; d) 

oblique aerial photograph of the beach and dune system at Greenwich 
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Dunes including the locations of study reaches (1-3) and cross-shore 

topographic profiles (after Ollerhead et al,. 2013). Bog Pond and Bowley 

Pond were produced by aeolian erosion of overwash scoured channels, 

fans and terraces created during the 1923 storm. 
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Figure 2: Topographic profiles of Lines 5-8 (A-D) in reach 2 taken  from DEMs 

constructed from orthorectified air photo mosaics taken in 1953, 1971 and 

1997 (Mathew et al., 2010) and in 2016 as part of the continuation of profile 

surveys described in Ollerhead et al., 2013. Height is measured relative to 

mean sea level. 
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Figure 3: Crest height along lines 5-8 over the period: a) 1953-2016; and b) over the 

period 1997-2016. Crest elevations are based on DEMs from air photos in 

1953, 1971 and 1997, and on survey measurements in the remaining 

years. 
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Figure 4: Topographic profiles for selected years 2002 - 2016 along lines 5-8. 

  



 

This article is protected by copyright. All rights reserved. 

 

Figure 5: Variation in the maximum foredune stoss slope angle over the period 2002-

2016. 
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Figure 6: Photographs of the beach and foredune at Line 6; a) View looking west of 

the beach and stoss slope of the foredune in June 2011 showing erosion 

from the December 2010 storm event; b) View from the crest at Line 6 

looking east towards Line 5, July 5, 2016. The top of the scarp from the 

December 2010 storm is just visible at the left of the crest and below this 

the dune ramp that built subsequent to the storm has been colonised by 

marram and an incipient dune is becoming established at the top of the 

beach.  
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Figure 7: Decadal changes in the simulated foredune height and width over 100 

years with an annual input of 5m3a-1: a) simulation run without erosion; b) 

the same simulation run but with erosional events. The stoss slope is set at 

30°, the lee slope at 20°, and the initial dune height is 3 m. 
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Figure 8: Output from simulation runs with varying sediment input: a) Evolution of 

foredune volume and height over 400 years with sediment input of 5m3a-1. 

The potential volume of erosion due to storm events is shown in green 

(plotted against the right (Y) axis) and the actual erosion is superimposed 

in purple.; b) Similar to a) but with sediment input of 1.5m3a-1. Sediment 

input is almost matched by erosion and most growth takes place during 

periods where erosion events are minor and with long intervals between; c) 

Growth in dune height over 400 years of simulation for sediment inputs 

ranging from 1.5-10 m3a-1; d) Variations in dune height increase with 

sediment input of 2.5m3a-1 for four different random number sequences of 

storm events. The random sequence R1 (which was used in all the other 

simulations runs reported here) produces average growth rates in the first 
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100 years but after that the rate of growth is generally the smallest of the 

four sequences. At any one time the difference between the highest and 

lowest dune may be 2-3 m. 
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Since it was initiated 80 years ago this 10 m high, steep foredune has been growing 

continuously in height and width, and is increasing in height today at a rate of about 

1 m per decade. This empirical evidence and results from a computer simulation 

model show that a steep seaward slope does not cut off sand supply for dune growth 

and that foredunes can potentially increase in height indefinitely.  

 


