101 research outputs found

    Plasma concentrations of endocannabinoids and related primary Fatty Acid amides in patients with post-traumatic stress disorder.

    Get PDF
    Endocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. We determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS), which also assesses traumatic events. Individuals with PTSD showed significantly higher plasma concentrations of ANA (0.48±0.11 vs. 0.36±0.14 ng/ml, p = 0.01), 2-AG (8.93±3.20 vs. 6.26±2.10 ng/ml, p<0.01), OEA (5.90±2.10 vs. 3.88±1.85 ng/ml, p<0.01), SEA (2.70±3.37 vs. 0.83±0.47, ng/ml, p<0.05) and significantly lower plasma levels of OLDA (0.12±0.05 vs. 0.45±0.59 ng/ml, p<0.05) than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93±3.20 vs. 6.01±1.32 ng/ml, p = 0.03) and also higher plasma concentrations of PEA (4.06±1.87 vs. 2.63±1.34 ng/ml, p<0.05) than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19) correlated positively with PEA (r = 0.55, p = 0.02) and negatively with OLDA plasma levels (r = -0.68, p<0.01). CAPS subscores for intrusions (r = -0.65, p<0.01), avoidance (r = -0.60, p<0.01) and hyperarousal (r = -0.66, p<0.01) were all negatively related to OLDA plasma concentrations. PTSD appears to be associated with changes in plasma EC/NAE concentrations. This may have pathophysiological and diagnostic consequences but will need to be reproduced in larger cohorts

    Associating Emergency Medical Services personnel's workload, trauma exposure, and health with the cortisol, endocannabinoid, and N-acylethanolamine concentrations in their hair

    Get PDF
    In their line of duty, Emergency Medical Services (EMS) personnel are exposed to chronically stressful working conditions and recurrent traumatic events, which increase their risk for detrimental health outcomes. Here, we investigated whether this risk is due to altered regulation of the hypothalamus-pituitary-adrenal (HPA) axis and the endocannabinoid system. Therefore, 1 cm hair strands were collected from a cohort of 72 German EMS personnel in order to measure concentrations of cortisol, endocannabinoids [i.e., anandamide (AEA), 2-arachidonoylglycerol (2-AG)], and N-acylethanolamines [i.e., stearoylethanolamide (SEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA)]. Rank correlation analyses were conducted to test associations of cortisol, endocannabinoid, and N-acylethanolamine concentrations with the EMS personnel's workload, lifetime trauma exposure, and mental and physical health problems. We found a negative correlation between cortisol and 2-AG concentrations in hair. Higher hair cortisol was associated with higher workload. Reported traumatic stress during childhood and later in life as well as more severe depressive and physical stress symptoms were associated with elevated 2-AG, SEA, OEA, and PEA concentrations. Future longitudinal research needs to address the prospect of tracing biomolecular markers of glucocorticoid, endocannabinoid, and N-acylethanolamine activity as a predicting value of the long-term course of mental and physical well-being

    Serum profile changes in postpartum women with a history of childhood maltreatment: a combined metabolite and lipid fingerprinting study

    Get PDF
    Koenig AM, Karabatsiakis A, Stoll T, et al. Serum profile changes in postpartum women with a history of childhood maltreatment: a combined metabolite and lipid fingerprinting study. Scientific Reports. 2018;8(1): 3468

    The Association of Childhood Maltreatment With Lipid Peroxidation and DNA Damage in Postpartum Women

    Get PDF
    Childhood maltreatment (CM) is associated with an increased risk for the development of psychiatric and somatic disorders in later life. A potential link could be oxidative stress, which is defined as the imbalance between the amount of reactive oxygen species (ROS) and the neutralizing capacity of anti-oxidative defense systems. However, the findings linking CM with oxidative stress have been inconsistent so far. In this study, we aimed to further explore this association by investigating biological markers of DNA and lipid damage due to oxidation in a comprehensive approach over two study cohorts of postpartum women (study cohort I and study cohort II). The severity of CM experiences (maltreatment load) was assessed in both studies using the Childhood Trauma Questionnaire. In study cohort I (N = 30), we investigated whether CM was associated with higher levels of structural DNA damage in peripheral blood mononuclear cells (PBMC) by two methods that are highly sensitive for detecting nuclear DNA strand breaks (comet assay and γH2AX staining). In study cohort II (N = 117), we then assessed in a larger cohort, that was specifically controlled for potential confounders for oxidative stress measurements, two established serum and plasma biomarkers of oxidative stress, one representing oxidative DNA and RNA damage (8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine; 8-OH(d)G) and the other representing lipid peroxidation (8-isoprostane). In study cohort I, the analyses revealed no significant main effects of maltreatment load on cellular measures of nuclear DNA damage. The analyses of peripheral oxidative stress biomarkers in study cohort II revealed a significant main effect of maltreatment load on free 8-isoprostane plasma levels, but not on total 8-isprostane plasma levels and 8-OH(d)G serum levels. Taken together, by combining different methods and two study cohorts, we found no indications for higher oxidative DNA damages with higher maltreatment load in postpartum women. Further research is needed to investigate whether this increase in free 8-isoprostane is a marker for oxidative stress or whether it is instead functionally involved in ROS-related signaling pathways that potentially regulate inflammatory processes following a history of CM

    Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults.

    Get PDF
    Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions

    Atypical maternal interaction is associated with elevated levels of hair cortisol in children

    Get PDF
    The quality of maternal caregiving is an important factor in the healthy development of a child. One consequence of prolonged insensitive and atypical maternal interaction behavior (e.g., withdrawing from interactions with the child and role-reversal, i.e., the takeover of the parental role or parts of it by the child) in mother-child-dyads can cause alteration of the child's stress response system. Higher salivary cortisol concentrations were reported in infants and toddlers directly after negative interactions with their parents. However, no study to date has examined the association between atypical maternal interaction behavior and hair cortisol concentrations (HCC) in infants. Here, we studied the association of maternal interaction behavior with HCC of the child. Mother-child dyads (N = 112) participated in the longitudinal study My Childhood—Your Childhood. The AMBIANCE scale and its subscales were used to assess atypical maternal interaction behavior during the Strange Situation Procedure. Chronic stress levels in the child were assessed by HCC of 3 cm hair strands at the age of 12 months. Maternal educational level (operationalized in highest education level) served as a control variable. Robust multiple linear regression analyses revealed that role/boundary confusion was associated with HCC, i.e., the higher atypical interaction behavior of the mother the higher the HCC in the children. By measuring hair cortisol in this study, it is possible to determine the average long-term activity of the child's stress response system.Thus, atypical maternal interaction behavior could be a risk factor for persistent stress in children, contributing to a higher risk for negative health outcomes in later life. The results of this study highlight the importance of early intervention programs that focus on the relationship between mother and child

    Caution, "normal" BMI: health risks associated with potentially masked individual underweight - EPMA position paper 2021

    Get PDF
    An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters - all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice

    Genes Linking Mitochondrial Function, Cognitive Impairment and Depression are Associated with Endophenotypes Serving Precision Medicine

    Get PDF
    Mitochondria densely populate cells in central nervous system providing essential energy for neurons and influencing synaptic plasticity. Harm to these organelles can impair cognitive performance through damaged neurotransmission and altered Ca2+ homeostasis. Impaired cognition could be one underlying factor which can characterize major depressive disorder, a huge burden for society marked by depressed mood and anhedonia. A growing body of evidence binds mitochondrial dysfunctions with the disease. Cognitive disturbances with different severity are also observable in several patients, suggesting that damage or inherited alterations of mitochondria may have an important role in depression. Since several different biological and environmental factors can lead to depression, mitochondrial changes may represent a significant subgroup of depressive patients although cognitive correlates can remain undiscovered without a specific focus. Hypothesis driven studies instead of GWAS can pinpoint targets relevant only in a subset of depressed population. This review highlights results mainly from candidate gene studies on nuclear DNA of mitochondrion-related proteins, including TOMM40, MTHFD1L, ATP6V1B2 and MAO genes, also implicated in Alzheimer's disease, and alterations in the mitochondrial genome to argue for endophenotypes where impaired mitochondrial function may be the leading cause for depressive symptomatology and parallel cognitive dysfunction

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    • …
    corecore