188 research outputs found

    Radiologically isolated aquaporin-4 antibody neuromyelitis optica spectrum disorder

    Get PDF
    Aquaporin-4 antibody (AQP4-Ab) Neuromyelitis Optica Spectrum Disorder (NMOSD) is a rare neuroinflammatory syndrome presenting predominantly with optic neuritis and transverse myelitis. We report a case of radiologically isolated longitudinally extensive optic neuritis in an asymptomatic 12-year-old female with positive serum AQP4-Ab, with resolution of imaging changes after immune therapy. By contrast to patients with radiologically isolated syndrome, of which some will never convert to multiple sclerosis, the pathogenicity of AQP4-Ab in the context of sub-clinical disease, supported treatment in our patient. Given the severe morbidity in AQP4-Ab NMOSD, prognostic biomarkers for disease severity are required to guide optimal therapy for patients

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base

    Brain plasticity following intensive bimanual therapy in children with hemiplegia

    Get PDF
    Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children’s Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH

    Brain Plasticity following Intensive Bimanual Therapy in Children with Hemiparesis: Preliminary Evidence

    Get PDF
    Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children’s Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH.This project was funded by grants from Guy’s and St Thomas’ Charity, Marnie Kimelman Trust and ILAN, the Israeli Association for Disabled children. Beit Issie Shapiro funded and provided the camp venue. D. Green was supported by a grant from the Department of Immigration and Absorption during 2010-2011

    Cortical Reorganization following Injury Early in Life

    Get PDF
    The brain has a remarkable capacity for reorganization following injury, especially during the first years of life. Knowledge of structural reorganization and its consequences following perinatal injury is sparse. Here we studied changes in brain tissue volume, morphology, perfusion, and integrity in children with hemiplegia compared to typically developing children, using MRI. Children with hemiplegia demonstrated reduced total cerebral volume, with increased cerebrospinal fluid (CSF) and reduced total white matter volumes, with no differences in total gray matter volume, compared to typically developing children. An increase in cortical thickness at the hemisphere contralateral to the lesion (CLH) was detected in motor and language areas, which may reflect compensation for the gray matter loss in the lesion area or retention of ipsilateral pathways. In addition, reduced cortical thickness, perfusion, and surface area were detected in limbic areas. Increased CSF volume and precentral cortical thickness and reduced white matter volume were correlated with worse motor performance. Brain reorganization of the gray matter within the CLH, while not necessarily indicating better outcome, is suggested as a response to neuronal deficits following injury early in life.Guy’s and St Thomas’ Charity and the Marnie Kimelman Trus

    Erythrocyte Transketolase Activity, Markers of Cardiac Dysfunction and the Diagnosis of Infantile Beriberi

    Get PDF
    Infantile beriberi, or clinical thiamin (vitamin B1) deficiency in infants, is a forgotten disease in Asia, where ∼100 years ago it was a major public health problem. Children aged ∼2–3 months present in cardiac failure but usually rapidly improve if given thiamin injections. It remains relatively common in Vientiane, Lao PDR (Laos) probably because of prolonged intra- and post-partum maternal food avoidance behaviours. There has been very little recent research on the best diagnostic techniques. We conducted a case control study of 47 infants with beriberi and age-matched afebrile and febrile controls in Vientiane. The conventional measures of thiamin deficiency, basal and activated erythrocyte transketolase activities (ETK) and activation (α) coefficients, were assayed along with three markers of cardiac dysfunction - plasma brain natriuretic peptide, N-terminal pro-brain natriuretic peptide, and troponin T. Basal ETK was a better biochemical marker of infantile beriberi than the activation coefficient. Raised plasma troponin T may be a useful indicator of infantile beriberi in babies at risk and in the absence of other evident causes

    Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults.

    Get PDF
    Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions

    Mouse Idh3a Mutations Cause Retinal Degeneration and Reduced Mitochondrial Function

    Get PDF
    Isocitrate dehydrogenase (IDH) is an enzyme required for the production of α-ketoglutarate from isocitrate. IDH3 generates the NADH used in the mitochondria for ATP production, and is a tetramer made up of two α, one β and one γ subunit. Loss-of-function and missense mutations in both IDH3A and IDH3B have previously been implicated in families exhibiting retinal degeneration. Using mouse models, we investigated the role of IDH3 in retinal disease and mitochondrial function. We identified mice with late-onset retinal degeneration in a screen of ageing mice carrying an ENU-induced mutation, E229K, in Idh3a Mice homozygous for this mutation exhibit signs of retinal stress, indicated by GFAP staining, as early as 3 months, but no other tissues appear to be affected. We produced a knockout of Idh3a and found that homozygous mice do not survive past early embryogenesis. Idh3a-/E229K compound heterozygous mutants exhibit a more severe retinal degeneration compared with Idh3aE229K/E229K homozygous mutants. Analysis of mitochondrial function in mutant cell lines highlighted a reduction in mitochondrial maximal respiration and reserve capacity levels in both Idh3aE229K/E229K and Idh3a-/E229K cells. Loss-of-function Idh3b mutants do not exhibit the same retinal degeneration phenotype, with no signs of retinal stress or reduction in mitochondrial respiration. It has previously been reported that the retina operates with a limited mitochondrial reserve capacity and we suggest that this, in combination with the reduced reserve capacity in mutants, explains the degenerative phenotype observed in Idh3a mutant mice.This article has an associated First Person interview with the first author of the paper
    • …
    corecore