784 research outputs found

    Extended Armendariz Rings

    Get PDF
    In this note we introduce central linear Armendariz rings as a generalization of Armendariz rings and investigate their properties

    Duo modules

    Get PDF
    Let R be a ring. An R-module M is called a (weak) duo module provided every (direct summand) submodule of M is fully invariant. It is proved that if R is a commutative domain with field of fractions K then a torsion-free uniform R-module is a duo module if and only if every element k in K such that kM is contained in M belongs to R. Moreover every non-zero finitely generated torsion-free duo R-module is uniform. In addition, if R is a Dedekind domain then a torsion R-module is a duo module if and only if it is a weak duo module and this occurs precisely when the P-primary component of M is uniform for every maximal ideal P of R

    Developing an Unnatural Amino Acid-Specific Aminoacyl tRNA Synthetase

    Get PDF
    Unnatural Amino Acids (UAAs), amino acids not present in the human genetic code, have been synthesized to have a broad range of useful properties, in this case, as metal-binders which could have drug delivery applications. In order for the cell to place a UAA into the protein, two components, a unique aminoacyl tRNA synthetase and a corresponding tRNA must be present. If an amino acid is successfully charged to the tRNA, a stop codon is suppressed and a functional protein is built with the UAA at the mutation site. Such a tRNA molecule has previously been developed, as well as many synthetases specific to UAAs. In this work, the range of UAAs which can be incorporated into proteins using the E. coli’s own machinery is expanded by the development of a novel aminoacyl tRNA synthetase. By making a library of synthetase-coding plasmid variants and performing positive and negative screenings, the binding pocket of the synthetase can be modified for specificity to a UAA while not allowing the tRNA to be charged with a natural amino acid. In this work, we are attempting to evolve new tRNA synthetases for the incorporation of metal-binding amino acids by developing the plasmid library and a screening system to find synthetase variants meeting these criteria
    corecore